|
[1]
|
P. Avouris, Z. H. Chen and P. Vasili. Carbon-based electronics. Nature Nanotechnology, 2001, 2(10): 605-615.
|
|
[2]
|
A. K. Geim, K. S. No-voselov. The rise of grapheme. Nature Materials, 2007, 6(3): 183-191.
|
|
[3]
|
A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, et al. Electronic prop-erties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Physics Report, 2011, 503(2-3): 77-114.
|
|
[4]
|
T. Ihn, J. Güttinger, F. Molitor, et al. Graphene sin-gle-electron transistors. Materials Today, 2010, 13(3): 44-50.
|
|
[5]
|
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, et al. Chaotic dirac billiard in graphene quantum dots. Science, 2008, 320(5847): 356-358.
|
|
[6]
|
C. Stampfer, E. Schurtenberger, F. Molitor, et al. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378- 2383.
|
|
[7]
|
C. Stampfer, J. Guttinger, F. Molitor, et al. Tunable coulomb blockade in nanostructured grapheme. Applied Physical Letters, 2008, 92(1): 012102-012104.
|
|
[8]
|
J. Guttinger, C. Stampfer, S. Hellmuller, et al., Charge detection in graphene quantum dots. Applied Physical Letters, 2008, 93 (21): 212102-212104.
|
|
[9]
|
S. Schnez, F. Molitor, C. Stampfer, et al. Observation of excited states in a graphene quantum dot. Applied Physical Letters, 2009, 94(1): 012107-012109.
|
|
[10]
|
J. Guttinger, T. Frey, C. Stampfer, et al. Spin states in graphene quantum dots. Applied Physical Letters, 2010, 105(11): 116801- 116804.
|
|
[11]
|
A. H. C. Neto, F. Guinea, N. M. R. Peres, et al. The electronic properties of grapheme. Reviews of Modern Physics, 2009, 81 (1): 109-162.
|
|
[12]
|
P. G. Silvestrov, K. B. Efetov. Quantum dots in graph-eme. Phy- sical Review Letters, 2007, 98(1): 016802-016806.
|
|
[13]
|
B. Trauzettel, D. V. Bulaev, D. Loss, et al. Spin qubits in graphene quan-tum dots. Nature Physics, 2007, 3(3): 192-196.
|
|
[14]
|
P. Hewageegana, V. Apalkov. Electron localization in graphene quantum dots. Physical Review B, 2008, 77(24): 245426-245434.
|
|
[15]
|
Z. F. Wang, Q. W. Shi, Q. X. Li, et al. Z-shaped graphene nano- ribbon quantum dot device. Ap-plied Physical Letters, 2007, 91 (5): 053109-053112.
|
|
[16]
|
Z. F. Wang, Q. X. Li and Q. W. Shi. Ballistic rectification in a Z-shaped graphene nanoribbon junction. Applied Physical Letters, 2008, 92(13): 223116-223116.
|
|
[17]
|
Z. P. Xu, Q.-S. Zhen and G.-H. Chen. Elementary building blocks of graphene-nanoribbon-based electronic devices. Ap-plied Physical Letters, 2007, 90(22): 223115-223118.
|
|
[18]
|
Y.-J. Xiong, B.-K. Xiong. Resonant transport through graphene nanoribbon quan-tum dots. Journal of Applied Physics, 2011, 109 (10): Article ID 103707.
|
|
[19]
|
G. Giovannetti, P. A. Khomyakov, G. Brocks, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B, 2007, 76(7): Article ID 073103.
|
|
[20]
|
S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, et al. Substrate-induced bandgap opening in epitaxial grapheme. Nature Materials, 2007, 6(10): 770-775.
|
|
[21]
|
Y.-T. Zhang, Q.-F. Sun, X. C. Xie. The effect of disorder on the valley-dependent transport in zigzag grapheme nanoribbons. Jour- nal of Applied Physics, 2011, 109(12): Article ID 123718.
|
|
[22]
|
Z. H. Qiao, et al. Spin-polarized and valley helical edge modes in graphene nanoribbons. Physical Review B, 2011, 84(3): Article ID 035431.
|
|
[23]
|
H. Xu, T. Heinzel, M. Evaldsson, et al. Magnetic barriers in graphene nanoribbons: Theoretical study of transport properties. Physical Review B, 2008, 77(24): Article ID 245401.
|