硼酸活化碳酸钾溶液吸收CO2的研究
Study on CO2 Absorption with Aqueous Potassium Carbonate Solution Promoted by Boric Acid
DOI: 10.12677/HJCET.2012.24018, PDF, HTML,  被引量 下载: 3,802  浏览: 11,848 
作者: 申淑锋*, 冯晓霞:河北科技大学化学与制药工程学院
关键词: 二氧化碳吸收碳酸钾硼酸气液平衡Carbon Dioxide Absorption; Potassium Carbonate; Boric Acid; Vapor-Liquid Equilibrium
摘要: 加入活化剂是提高碳酸钾溶液吸收CO2速率的有效方法。在湿壁柱中研究不同活化碳酸钾溶液吸收CO2的效果基础上,考察了不同硼酸浓度对碳酸钾吸收CO2速率的影响,测定了活化液的气液平衡数据。结果表明加入硼酸能够明显提高CO2吸收速率,3 wt%硼酸可将总传质系数提高约80%;碳酸钾溶液随着温度升高CO2平衡分压升高,加入硼酸后比相同条件下碱液的CO2平衡分压略低,有利于二氧化碳吸收。
Abstract:

The addition of promoter into aqueous potassium carbonate solution is one of the effective ways to enhance the CO2 absorption rate. In this work, the CO2 absorption rates were investigated for aqueous carbonate solution promoted by different addictives in a wetted wall column. The effect of concentration of boric acid on the overall gas-phase mass transfer coefficient and vapor-liquid equilibrium data was discussed. Results showed that the addition of boric acid can significantly enhance the CO2 absorption rate. The overall mass transfer coefficient increased by 80% with the addition of 3 wt% boric acid. CO2 partial pressure increased with the increasing temperature of aqueous potassium carbonate. However it decreased when boric acid was added, which would be favorable for CO2 absorption.

文章引用:申淑锋, 冯晓霞. 硼酸活化碳酸钾溶液吸收CO2的研究[J]. 化学工程与技术, 2012, 2(4): 103-107. http://dx.doi.org/10.12677/HJCET.2012.24018

参考文献

[1] 李芬芬, 杨永红, 杨成, 张文郁, 吴晋沪. 电厂烟气中二氧化碳的捕获[J]. 化学工程与技术, 2011, 1(1): 4-10.
[2] G. Astarita, D. W. Savage and J. M. Longo. Promotion of CO2 mass transfer in carbonate solutions. Chemical Engineering Sci- ence, 1981, 36(3): 581-588.
[3] A. Khodayari. Experimental and theoretical study of carbon dioxide absorption into potassium carbonate solution promoted with enzyme. University of Illinois at Urbana-Champaign, 2010.
[4] G. T. Rochelle, F. Seibert, F. Closmann, T. Cullinane, J. Davis, G. Goff, M. Hilliard and J. McLees. CO2 capture by absorption with potassium carbonate, final report. The University of Texas at Austin and the Uni-versity of Regina, Saskatchewan, 2007.
[5] 李建强, 张新军, 陆诗建等. 碳酸钾-二乙烯三胺复合溶液吸收烟气中CO2实验研究[J]. 环境科学学报, 2011, 31(7): 1501- 1508.
[6] J. T. Cullinane, G. T. Rochelle. Carbon dioxide absorption with aqueous potassium carbon-ate promoted by piperazine. Chemical Engineering Science, 2004, 59(17): 3619-3630.
[7] M. M. Sharma, P. V. Danckwerts. Catalysis by brønsted bases of the reaction between CO2 and water. Transaction of the Faraday Society, 1963, 59: 386-395.
[8] 乐清华, 徐晋林, 施亚钧. 五氧化二钒催化钾碱液吸收二氧化碳的机理[J]. 物理化学学报, 1992, 8(6): 753-759.
[9] M. Ahmadi, V. G. Gomes and K. Ngian. Advanced modelling in performance optimization for reactive separa-tion in industrial CO2 removal. Seperation and Purification Technology, 2008, 63(1): 107-115.
[10] U. K. Ghosh, S. E. Kentish and G. W. Stevens. Absorption of carbon dioxide into aqueous potassium carbon-ate promoted by boric acid. Energy Procedia, 2009, 1(1): 1075-1081.
[11] K. Endo, Q. S. Nguyen, S. E. Kentish and G. W. Stevens. The effect of boric acid on the vapour liquid equilibrium of aqueous potas-sium carbonate. Fluid Phase Equilibria, 2011, 309(2): 109- 113.
[12] D. Guo, H. Thee, G. Silva, J. Chen, W. Fei, S. Kentish and G. W. Stevens. Borate-catalyzed carbon dioxide hydration via the car- bonic anhydrase mechanism. Environmental Science & Technology, 2011, 45(11): 4802-4807.
[13] S. Paul, K. Thomsen. Kinetics of ab-sorption of carbon dioxide into aqueous potassium salt of praline. International Journal of Greenhouse Gas Control, 2012, 8: 169-179.