|
[1]
|
Liang, Y., Zhang, H., Song, X. and Yang, Q. (2020) Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets. Seminars in Cancer Biology, 60, 14-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Woolston, C. (2015) Breast Cancer. Nature, 527, S101. [Google Scholar] [CrossRef]
|
|
[3]
|
Fahad Ullah, M. (2019) Breast Cancer: Current Perspectives on the Disease Status. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance, Vol. 1152, Springer, Cham, 51-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Libson, S. and Lippman, M. (2014) A Review of Clinical Aspects of Breast Cancer. International Review of Psychiatry, 26, 4-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
The Cancer Genome Atlas Network (2012) Comprehensive Molecular Portraits of Human Breast Tumours. Nature, 490, 61-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Curigliano, G. and Criscitiello, C. (Eds.) (2014) Successes and Limitations of Targeted Cancer Therapy in Breast Cancer. Progress in Tumor Research, 41, 15-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yao, J., Tan, W., Wu, W., Ye, R., Li, Y. and Chen, Y. (2020) Effects of miR-432 and miR-548c-3p on the Proliferation and Invasion of Osteosarcoma Cells. Journal of BUON, 25, 1562-1568.
|
|
[8]
|
Tong, L., Yang, H., Xiong, W., Tang, G., Zu, X. and Qi, L. (2021) Circ_100984-miR-432-3p Axis Regulated c-Jun/YBX-1/beta-Catenin Feedback Loop Promotes Bladder Cancer Progression. Cancer Science, 112, 1429-1442. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dong, C., Fan, B., Ren, Z., Liu, B. and Wang, Y. (2021) CircSMARCA5 Facilitates the Progression of Prostate Cancer through miR-432/PDCD10 Axis. Cancer Biotherapy & Radiopharmaceuticals, 36, 70-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., Xu, W., Zu, M. and Xu, H. (2021) Circular RNA Circ_0021093 Regulates miR-432/Annexin A2 Pathway to Promote Hepatocellular Carcinoma Progression. Anticancer Drugs, 32, 484-495. [Google Scholar] [CrossRef]
|
|
[11]
|
Gong, Y., Zhang, S., Wang, H.X., Huang, Y., Fu, X., Xiang, P., et al. (2022) The Involvement of the circFOXM1-miR-432-Galpha12 Axis in Glioma Cell Proliferation and Aggressiveness. Cell Death Discovery, 8, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ye, B., Qiao, K., Zhao, Q., Jiang, Z., Hu, N. and Wang, F. (2022) Tanshinone I Restrains Osteosarcoma Progression by Regulating Circ_0000376/miR-432-5p/BCL2 Axis. Molecular and Cellular Biochemistry, 477, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, G. and Yang, H. (2021) CircRNA DUSP16 Knockdown Suppresses Colorectal Cancer Progression by Regulating the miR-432-5p/E2F6 Axis. Cancer Management and Research, 13, 6599-6609. [Google Scholar] [CrossRef]
|
|
[14]
|
Guo, C.M., Liu, S.Q. and Sun, M.Z. (2020) miR-429 as Biomarker for Diagnosis, Treatment and Prognosis of Cancers and Its Potential Action Mechanisms: A Systematic Literature Review. Neoplasma, 67, 215-228. [Google Scholar] [CrossRef]
|
|
[15]
|
Han, Y.T., et al. (2020) miR-429 Mediates Tumor Growth and Metastasis in Colorectal Cancer [Retraction]. American Journal of Cancer Research, 10, 2688.
|
|
[16]
|
Xiao, P., Liu, W. and Zhou, H. (2021) miR-429 Promotes the Proliferation of Non-Small Cell Lung Cancer Cells via Targeting DLC-1. Oncology Letters, 22, Article No. 545. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, X., Wang, A.L., Liu, Y.Y., Zhao, C.X., Zhou, X., Liu, H.L., et al. (2020) MiR-429 Involves in the Pathogenesis of Colorectal Cancer via Directly Targeting LATS2. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5316276. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yang, J., Liu, Y., He, A., Liu, Y., Wu, J., Liao, X., et al. (2017) Hsa-miR-429 Promotes Bladder Cancer Cell Proliferation via Inhibiting CDKN2B. Oncotarget, 8, 68721-68729. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, L., Liu, Q., Mu, Q., Zhou, D., Li, H., Zhang, B., et al. (2020) MiR-429 Suppresses Proliferation and Invasion of Breast Cancer via Inhibiting the Wnt/beta-Catenin Signaling Pathway. Thoracic Cancer, 11, 3126-3138. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, X., Yu, X., Zhao, Z., Yuan, Z., Ma, P., Ye, Z., et al. (2020) MicroRNA-429 Inhibits Bone Metastasis in Breast Cancer by Regulating CrkL and MMP-9. Bone, 130, Article ID: 115139. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, C., Ju, H., Shen, C. and Tong, Z. (2015) miR-429 Mediates Delta-Tocotrienol-Induced Apoptosis in Triple-Negative Breast Cancer Cells by Targeting XIAP. International Journal of Clinical and Experimental Medicine, 8, 15648-15656.
|
|
[22]
|
Ye, Z.B., Ma, G., Zhao, Y.H., Xiao, Y., Zhan, Y., Jing, C., et al. (2015) miR-429 Inhibits Migration and Invasion of Breast Cancer Cells in Vitro. International Journal of Oncology, 46, 531-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Polyak, K. (2007) Breast Cancer: Origins and Evolution. Journal of Clinical Investigation, 117, 3155-3163. [Google Scholar] [CrossRef]
|
|
[24]
|
Karagiannis, G.S., Goswami, S., Jones, J.G., Oktay, M.H. and Condeelis, J.S. (2016) Signatures of Breast Cancer Metastasis at a Glance. Journal of Cell Science, 129, 1751-1758. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Castaneda-Gill, J.M. and Vishwanatha, J.K. (2016) Antiangiogenic Mechanisms and Factors in Breast Cancer Treatment. Journal of Carcinogenesis, 15, 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ahmad, A. (2013) Pathways to Breast Cancer Recurrence. International Scholarly Research Notices, 2013, Article ID: 290568. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fouad, Y.A. and Aanei, C. (2017) Revisiting the Hallmarks of Cancer. American Journal of Cancer Research, 7, 1016-1036.
|
|
[28]
|
Jin, L., Han, B., Siegel, E., Cui, Y., Giuliano, A. and Cui, X. (2018) Breast Cancer Lung Metastasis: Molecular Biology and Therapeutic Implications. Cancer Biology & Therapy, 19, 858-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Correia de Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. and Foti, M. (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sciences, 20, Article No. 6249. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fabian, M.R. and Sonenberg, N. (2012) The Mechanics of miRNA-Mediated Gene Silencing: A Look under the Hood of miRISC. Nature Structural & Molecular Biology, 19, 586-593. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
He, B., Zhao, Z., Cai, Q., Zhang, Y., Zhang, P., Shi, S., et al. (2020) miRNA-Based Biomarkers, Therapies, and Resistance in Cancer. International Journal of Biological Sciences, 16, 2628-2647. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005) MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 65, 7065-7070. [Google Scholar] [CrossRef]
|
|
[33]
|
Wang, W. and Luo, Y.P. (2015) MicroRNAs in Breast Cancer: Oncogene and Tumor Suppressors with Clinical Potential. Journal of Zhejiang University: SCIENCE B, 16, 18-31. [Google Scholar] [CrossRef]
|
|
[34]
|
Jiang, D. and Zhao, N. (2006) A Clinical Prognostic Prediction of Lymph Node-Negative Breast Cancer by Gene Expression Profiles. Journal of Cancer Research and Clinical Oncology, 132, 579-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shen, J., Stass, S.A. and Jiang, F. (2013) MicroRNAs as Potential Biomarkers in Human Solid Tumors. Cancer Letters, 329, 125-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wen, B., Zhu, R., Jin, H. and Zhao, K. (2021) Differential Expression and Role of miR-200 Family in Multiple Tumors. Analytical Biochemistry, 626, Article ID: 114243. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cavallari, I., Ciccarese, F., Sharova, E., Urso, L., Raimondi, V., Silic-Benussi, M., et al. (2021) The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers, 13, Article No. 5874. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mao, Y., Chen, W., Wu, H., Liu, C., Zhang, J. and Chen, S. (2020) Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. OncoTargets and Therapy, 13, 13479-13490. [Google Scholar] [CrossRef]
|
|
[39]
|
Koutsaki, M., Libra, M., Spandidos, D.A. and Zaravinos, A. (2017) The miR-200 Family in Ovarian Cancer. Oncotarget, 8, 66629-66640. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Peng, L., Fu, J. and Ming, Y. (2018) The miR-200 Family: Multiple Effects on Gliomas. Cancer Management and Research, 10, 1987-1992. [Google Scholar] [CrossRef]
|
|
[41]
|
Xue, B., Chuang, C.H., Prosser, H.M., Fuziwara, C.S., Chan, C., Sahasrabudhe, N., et al. (2021) miR-200 Deficiency Promotes Lung Cancer Metastasis by Activating Notch Signaling in Cancer-Associated Fibroblasts. Genes & Development, 35, 1109-1122. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, C., Hu, W., Li, L.L., Wang, Y.X., Zhou, Q., Zhang, F., et al. (2018) Roles of miR-200 Family Members in Lung Cancer: More than Tumor Suppressors. Future Oncology, 14, 2875-2886. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gao, Y., Zhang, W., Liu, C. and Li, G. (2019) miR-200 Affects Tamoxifen Resistance in Breast Cancer Cells through Regulation of MYB. Scientific Reports, 9, Article ID: 18844. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kozak, J., Jonak, K. and Maciejewski, R. (2020) The Function of miR-200 Family in Oxidative Stress Response Evoked in Cancer Chemotherapy and Radiotherapy. Biomedicine & Pharmacotherapy, 125, Article ID: 110037. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, H.F., Xu, L.Y. and Li, E.M. (2014) A Family of Pleiotropically Acting MicroRNAs in Cancer Progression, miR-200: Potential Cancer Therapeutic Targets. Current Pharmaceutical Design, 20, 1896-1903. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Fabian, M.R., Sonenberg, N. and Filipowicz, W. (2010) Regulation of mRNA Translation and Stability by MicroRNAs. Annual Review of Biochemistry, 79, 351-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wujak, L., Schnieder, J., Schaefer, L. and Wygrecka, M. (2018) LRP1: A Chameleon Receptor of Lung Inflammation and Repair. Matrix Biology, 68-69, 366-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Boulagnon-Rombi, C., Schneider, C., Leandri, C., Jeanne, A., Grybek, V., Bressenot, A.M., et al. (2018) LRP1 Expression in Colon Cancer Predicts Clinical Outcome. Oncotarget, 9, 8849-8869. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Feng, C., Ding, G., Ding, Q. and Wen, H. (2018) Overexpression of Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is Associated with Worsened Prognosis and Decreased Cancer Immunity in Clear-Cell Renal Cell Carcinoma. Biochemical and Biophysical Research Communications, 503, 1537-1543. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Meng, H., Chen, G., Zhang, X., Wang, Z., Thomas, D.G., Giordano, T.J., et al. (2011) Stromal LRP1 in Lung Adenocarcinoma Predicts Clinical Outcome. Clinical Cancer Research, 17, 2426-2433. [Google Scholar] [CrossRef]
|