|
[1]
|
T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, et al. Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Applied Physics Letters, 2004, 85(18): 4205-4207.
|
|
[2]
|
J. Zaumseil, R. H. Friend and H. Sirringhaus. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Materials, 2006, 6(1): 69-74.
|
|
[3]
|
B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, et al. Large- scale complementary integrated circuits based on organic transistors. Nature, 2000, 403(6769): 521-523.
|
|
[4]
|
T. Someya, T. Sekitani, S. Iba, Y. Kato, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences USA, 2004, 101(27): 9966-9970.
|
|
[5]
|
K. Takimiya, Y. Kunugi, Y. Kouda, et al. 2,7-diphenyl[1] benzo- selenopheno[3,2-b][1]benzoselenophene as a stable organic semi- conductor for a high-performance field-effect transistor. Journal of American Chemical Society, 2006, 9: 3044-3050.
|
|
[6]
|
K. Yamada, J. Takeya, K. Shigeto, K. Tsukagoshi, Y. Aoyagi and Y. Iwasa. Charge transport of copper phthalocyanine single-crystal field-effect transistors stable above 100˚C. Applied Physics Letters, 2006, 88(12): Article ID: 122110.
|
|
[7]
|
Z. Bao, A. J. Lovinger and A. Dodabalapur. Organic field-effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 1996, 20(11): 3066-3068.
|
|
[8]
|
T. W. Kelly, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones. High performance organic thin film transistors. Materials Research Society Symposium Proceeding, 2003: 169-179.
|
|
[9]
|
F. Hong, X. Guo and J. Wang. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor. Organic Electronics, 2009, 10(6): 1097-1101.
|
|
[10]
|
R. Zeis, T. Siegrist and C. Kloc. Single-crystal field-effect tran- sistors based on copper phthalocyanine. Applied Physivs Letters, 2005, 86(2): Article ID: 022103.
|
|
[11]
|
H. B. Wang, F. Zhu, J. L. Yang, Y. H. Geng and D. H. Yan. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Advances Materials, 2008, 19(16): 2168- 2171.
|
|
[12]
|
H. B. Wang, X. J. Wang, H. C. Huang and D. H. Yan. Isotype heterojunction between organic crystalline semiconductors. Appied Physics Letters, 2008, 93(10): Article ID: 103307.
|
|
[13]
|
H. B. Wang, X. J. Wang, B. Yu, Y. H. Geng and D. H. Yan. p-p isotype organic heterojunction and ambipolar field-effect transistors. Applied Physics Letters, 2008, 93(11): Article ID: 113303.
|
|
[14]
|
C. H. Li, F. Pan and D. H. Yan. Very low hysteresis organic thin-film transistors. Semiconductor Science and Technology, 2009, 24(8): Article ID: 085009.
|
|
[15]
|
X. Liu, Y. Bai, Z.-L. Zhang, et al. Organic thin film transistors with double insulator layers. Journal of Optoelectronics•Laser (光电子•激光), 2008, 5: 577-580. (in Chinese)
|
|
[16]
|
F. Garnier, G. Horowitz, X. Z. Peng and D. Fichou. Structural basis for high carrier mobility in conjugated oligomers. Synthetic Metals, 1991, 2: 163-171.
|
|
[17]
|
G. Horowitz. Organic field-effect transistors. Advanced Materials, 1998, 5: 365-377.
|
|
[18]
|
G. Horowitz, R. Hajlaoui, D. Fichou and A. E. Kassmi. Gate voltage dependent mobility of oligothiophene field-effect transistors. Journal of Applied Physics, 1999, 85(6): 3202-3206.
|