|
[1]
|
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turge- man, Y. Cohen, M. Moshkovich and E. Levi. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407: 724-727.
|
|
[2]
|
袁华堂, 吴峰, 武绪丽, 李强. 可充镁电池的研究和发展趋势[J]. 电池, 2002, 32(S1): 14-17.
|
|
[3]
|
冯真真, 努丽燕娜, 王久林, 杨军. 镁二次电池研究进展[J]. 化学与物理电源系统, 2007, 1: 73.
|
|
[4]
|
P. Novák, R. Imhof and O. Haas. Magnesium insertion elec- trodes for rechargeable nonaqueous batteries: A competitive alter- native to lithium. Electrochimica Acta, 1999, 45: 351-367.
|
|
[5]
|
郑育培, 努丽燕娜, 杨军, 陈强, 王久林. 可充镁电池正极材料研究进展[J]. 化工进展, 2011, 30(5): 1024-1032.
|
|
[6]
|
M. D. Levi, E. Lancry, H. Gizbar, Z. Lu, E. Levi, Y. Gofer and D. Aurbach. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel Phase. Journal of the Elec- trochemical Society, 2004, 151: A1044-A1051.
|
|
[7]
|
M. D. Levi, E. Lancri, E. Levi, H. Gizbar, Y. Gofer and D. Aurbach. The effect of the anionic framework of Mo6X8 Chevrel phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ionics, 2005, 176: 1695-1699.
|
|
[8]
|
D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid and M. Brunelli. Progress in rechargeable magnesium battery technology. Advanced Materials, 2007, 19: 4260-4267.
|
|
[9]
|
G. Suresh, M. Levi and D. Aurbach. Effect of chalcogen substi- tution in mixed Mo6S8–nSen (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochimica Acta, 2008, 53: 3889-3896.
|
|
[10]
|
N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer and D. Aurbach. Pro- gress in nonaqueous magnesium electrochemistry. Journal of Pow- er Sources, 2007, 174: 1234-1240.
|
|
[11]
|
A. Mitelman, M. D. Levi, E. Lancry, E. Levi and D. Aurbach. New cathode materials for rechargeable Mg batteries: Fast Mg ion transport and reversible copper extrusion in CuyMo6S8 com- pounds. Chemical Communications, 2007: 4212-4214.
|
|
[12]
|
E. Levi, A. Mitelman, D. Aurbach and M. Brunelli. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction. Chemistry of Materials, 2007, 19: 5131-1542.
|
|
[13]
|
Z. L. Tao, L. N. Xu, X. L. Gou, J. Chen and H. T. Yuan. TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chemi- cal Communications, 2004, 18: 2080-2081.
|
|
[14]
|
Y. L. Liang, R. J. Feng, S. Q. Yang, H. Ma, J. Liang and J. Chen. Rechargeable Mg batteries with Graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Advanced Materials, 2011, 23: 640-643.
|
|
[15]
|
L. F. Jiao, H. T. Yuan, Y. J. Wang, J. S. Cao and Y. M. Wang. Mg intercalation properties into open-ended vanadium oxide nano- tubes. Electrochemistry Communications, 2005, 7: 431-436.
|
|
[16]
|
L. F. Jiao, H. T. Yuan, Y. C. Si, Y. J. Wang and Y. M. Wang. Syn- thesis of Cu0.1-doped vanadium oxide nanotubes and their appli- cation as cathode materials for rechargeable magnesium bat- teries. Electrochemistry Communications, 2006, 8: 1041-1044.
|
|
[17]
|
Z. Z. Feng, J. Yang, Y. N. Nuli and J. L. Wang. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation beha- vior. Journal of Power Sources, 2008, 184: 604-609.
|
|
[18]
|
Z. Z. Feng, J. Yang, Y. N. Nuli, J. L. Wang and X. J. Wang. Pre- paration and electrochemical study of a new magnesium inter- calation material Mg1.03Mn0.97SiO4. Electrochemistry Communi- cations, 2008, 10: 1291-1294.
|
|
[19]
|
Y. N. Nuli, J. Yang, J. L. Wang and Y. L. Li. Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery ca- thode. Physical Chemistry C, 2009, 113: 12594-12597.
|
|
[20]
|
Y. N. Nuli, J. Yang, Y. S. Li and J. L. Wang. Mesoporous magne- sium manganese silicate as cathode materials for rechargeable mag- nesium batteries. Chemical Communications, 2010, 46: 3794-3796.
|
|
[21]
|
Y. N. Nuli, Y. P. Zheng, F. Wang, J. Yang, A. I. Minett, J. L. Wang and J. Chen. MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nano- structure for superior reversible magnesium ion storage. Elec- trochemistry Communications, 2011, 13: 1143-1146.
|
|
[22]
|
S. Y. Chuang, Y. M. Chiang. Electronically conductive phospho- olivines as lithium storage electrodes. Nature Materials, 2002, 2: 123-128.
|
|
[23]
|
C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. Journal of Power Sources, 2009, 193: 841-845.
|
|
[24]
|
J. Hong, C. S. Wang, X. Chen, S. Upreti and M. S. Whittingham. Vanadium modified LiFePO4 cathode for Li-ion batteries. Elec- trochemical and Solid-State Letters, 2009, 12: A33-A38.
|
|
[25]
|
J. Kim, Y. U. Park, D. H. Seo, J. Kim, S. W. Kim and K. Kang. Mg and Fe Co-doped Mn based olivine cathode material for high power capability. Journal of the Electrochemical Society, 2011, 158: A250-A254.
|
|
[26]
|
F. Wang, J. Yang, Y. N. Nuli and J. L. Wang. Highly promoted elec- trochemical performance of 5V LiCoPO4 cathode material by addi- tion of vanadium. Journal of Power Sources, 2010, 195: 6884-6887.
|
|
[27]
|
D. Aurbach, A. Schechter, M. Moshkovich and Y. Cohen. On the mechanisms of reversible magnesium deposition processes. Jour- nal of the Electrochemical Society, 2001, 148: A1004-A1014.
|
|
[28]
|
C. A. Francis, P. H. Ribbe. The forsterite-tephroite series: I. Crystal structure refinements. American Mineralogist, 1980, 65, 1263-1269.
|
|
[29]
|
A. M. Pires, M. R. Davolos. Luminescence of europium(III) and manganese(II) in barium and zinc orthosilicate. Chemistry of Materials, 2001, 13: 21-27.
|
|
[30]
|
刘芳凌, 韩绍昌, 陈晗, 于文志, 白咏梅. 掺杂离子价态对LiFePO4电化学性能的影响[J]. 电源技术, 2009, 33(5): 399-405.
|