利用二次正交旋转组合设计优化木瓜SRAP-PCR反应体系
Optimization of Chaenomeles SRAP-PCR Reaction System through the Quadratic Orthogonal Rotatable Combinatorial Design
DOI: 10.12677/BR.2012.13009, PDF, HTML, XML,  被引量 下载: 3,153  浏览: 10,301  国家自然科学基金支持
作者: 臧德奎, 尹长虹, 王延玲:山东农业大学林学院,泰安;马 燕:山东农业大学林学院
关键词: 木瓜属二次正交旋转组合设计PCR体系优化数学模型 Chaenomeles; Quadratic Orthogonal Rotatable CombinatorialDesignOptimization of PCR System; Mathematical Model
摘要:

以木瓜属(Chaenomeles)植物基因组DNA为模板采用五因素二次正交旋转组合设计(实施)PCR反应的5个因素(Mg2+dNTP、引物、Taq DNA聚合酶、模板DNA)进行研究,首次建立了PCR反应的各因素编码值与PCR结果评分值之间的数学模型。利用该模型,建立了PCR反应的最优体系,并进行了验证。最优体系的成功建立表明,该优化方法是稳定可靠的,可以为其他物种的PCR体系优化提供借鉴。

Abstract: Using Chaenomeles genome DNA as template, the relationship between the five PCR factors (Mg2+, dNTP, primer, Taq DNA polymerase, template DNA) and the PCR results was studied through the quadratic orthogonal rotatable combinatorial design. The mathematical model of the PCR result on the PCR factors was firstly established by software SAS9.0. Based on the model, the optimized amplification system for SRAP-PCR of Chaenomeles was set up and verified. The successful establishment of the optimization system showed that the quadratic orthogonal rotatable combinatorial design are stable and reliable to optimize the SRAP-PCR system, and it could be applied to the other optimization of PCR systems.

 

文章引用:臧德奎, 尹长虹, 王延玲, 马燕. 利用二次正交旋转组合设计优化木瓜SRAP-PCR反应体系[J]. 植物学研究, 2012, 1(3): 54-59. http://dx.doi.org/10.12677/BR.2012.13009

参考文献

[1] G. Li, C. F. Quiros. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461.
[2] M. Ferriol, B. Pico and F. Nuez. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107(2): 271- 282.
[3] H. Budak, R. C. Sheaiman, J. Paimaksiz, et al. Comparative analysis of seeded and vegetative biotype buffalo grasses based on phylogenetic relationship in using ISSRs, SSRs, RAPDs and SRAPs. Theoretical and Applied Genetics, 2004, 109(2): 280- 288.
[4] A. Riaz, D. Potter and M. Stephen. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. Journal of the American Society for Horticultural Science, 2004, 129: 204-211.
[5] J. J. Ruiz, M. S. Garcia, B. Pico, et al. Genetic variability and relationship of closely related Spanishi traditional cultivars of tomato as detected by SRAP and SSR markers. Journal of the American Society for Horticultural Science, 2005, 130: 88-95.
[6] D. L. Guo, Z. R. Luo. Genetic relationships of some PCNA Persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution, 2006, 53(8): 1597-1603.
[7] O. Gulsen, K S. aragul and K. Abak. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia, 2007, 62(1): 41-45.
[8] M. A. Espósito, E. A. Martin, V. P. Cravero, et al. Characterization of pea accessions by SRAP’s markers. Scientia Horticulturae, 2007, 113(4): 329-335.
[9] R. Ahmad, P. Liow, D. F. Spencer, et al. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquatic Botany, 2008, 88(2): 113-120.
[10] X. Y. Han, W L. S. ang, Z. A. Liu, et al. Characterization of sequence-related amplified polymorphism markers analysis of tree peony bud sports. Scientia Horticulturae, 2008, 115(3): 261- 267.
[11] Q. Hao, Z. A. Liu, Q. Y. Shu, et al. Studies on Paeonia cultivars and hybrids identification based on SRAP analysis, Hereditas, 2008, 145(1): 38-47.
[12] H. Z. Li, Y. P. Yin, C. Q. Zhang, et al. Comparison of characteristics of SRAP and SSR markers in genetic diversity analysis of cultivars in Allium fistulosum L. Seed Science and Technology, 2008, 36(2): 423-434.
[13] D. W. Xue, S. G. Feng, H. Y. Zhao, et al. The linkage maps of Dendrobium species based on RAPD and SRAP markers. Journal of Genetics and Genomics, 2010, 37: 197-204.
[14] 李亚利, 扈新民, 赵丹等. 运用SRAP分子标记鉴定辣椒杂交种纯度[J]. 中国农学通报, 2010, 26(24): 67-70.
[15] 郭凌飞, 邹明宏, 杜丽清等. 均匀设计优化澳洲坚果SRAP反应体系[J]. 果树学报, 2008, 25(2): 250-253.
[16] 张晓蕾, 张凯旋, 杨传平等. 白桦SRAP反应体系的建立与优化[J]. 东北林业大学学报, 2010, 28(9): 1-3.
[17] 任广跃, 王红英, 于庆龙等. 翻转卸料双轴桨叶饲料混合机工作性能试验研究[J]. 农业工程学报, 2004, 20(2): 132-135.
[18] 王德福, 蒋亦元. 双轴卧式全混合日粮混合机的试验研究[J]. 农业工程学报, 2006, 22(4):85-88.
[19] 刘淼, 王俊. 山核桃仁碱液浸泡法去皮工艺的研究[J]. 农业工程学报, 2007, 23(10): 256-260.
[20] 王金峰, 王金武, 葛宜元. 深施型液态施肥装置的设计与试验[J]. 农业机械学报, 2009, 40(4): 58-62.
[21] 王璐, 徐小琳, 韩军等. 响应面法优化棉籽油超声强化合成生物柴油工艺的研究[J]. 太阳能学报, 2010, 31(6): 666-670.
[22] 徐位力, 罗焕亮, 范恩友等. 二次正交旋转组合设计对马占相思组培增殖培养基的优化[J]. 广西植物, 2002, 22(6): 517- 520.
[23] 于恒秀, 周美艳, 王淼等. 利用二次正交旋转组合设计优化芍药胚苗快繁的培养基[J]. 扬州大学学报, 2008, 29(1): 84- 89.
[24] 谢必武, 张凤龙, 陈光蓉. 决明子优化栽培措施研究及模型建立[J]. 浙江大学学报, 2007, 33(4): 425-428.
[25] 王明明, 陈化榜, 王建华, 宋振巧, 李圣波. 木瓜属品种亲缘关系的SRAP分析[J]. 中国农业科学, 2010, 43(3): 542-551.
[26] G. S. H. Fang, R. Grumet. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques, 1992, 13: 52-57.
[27] 陈红, 张雷, 吕晓贞等. 适于木瓜属植物AFLP分析用DNA提取方法研究[J]. 北方园艺, 2008, 12: 161-163.
[28] 何正文, 刘运生, 陈立华等. 正交设计直观分析法优化PCR条件[J]. 湖南医科大学学报, 1998, 23(4) : 403-404.
[29] 王志勇, 袁学军, 刘建秀等. 狗牙根SRAP-PCR反应体系优化及引物筛选[J]. 草业学报, 2008, 17(3): 79-85.
[30] 彭秉玉, 胡延萍, 巩爱岐等. 杂交油菜ISSR-PCR反应体系的建立和优化[J]. 植物研究, 2010, 30(5): 576-581.
[31] 姜帆, 高慧颖, 陈秀萍等. 龙眼SRAP-PCR反应体系的优化[J]. 福建林业科技, 2007, 34(4): 20-23.
[32] 李艳香, 李达, 李炎林等. 八仙花SRAP反应体系的建立与优化[J]. 湖南农业科学, 2008, 6: 14-16.
[33] 楚爱香, 汤庚国. 观赏海棠SRAP-PCR反应体系优化及引物筛选[J]. 湖北农业科学, 2008, 47(12): 1394-1397.