|
[1]
|
王晓艳, 王婷琳, 周城, 等. 中国六省市白癜风流行病学调查[J]. 中华皮肤科杂志, 2010, 43(7): 463-466.
|
|
[2]
|
Jadeja, S.D., Mayatra, J.M., Vaishnav, J., et al. (2021) A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Frontiers in Immunology, 11, Article ID: 624566. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Blair, R.H., Horn, A.E., Pazhani, Y., et al. (2016) The HMGB1 C-Terminal Tail Regulates DNA Bending. Journal of Molecular Biology, 428, 4060-4072. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yang, H., Lundbäck, P., Ottosson, L., et al. (2021) Redox Modifications of Cysteine Residues Regulate the Cytokine Activity of HMGB1. Molecular Medicine, 27, 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Senda, N., Yanai, H., Hibino, S., et al. (2021) HMGB1-Mediated Chromatin Remodeling Attenuates IL24 Gene Expression for the Protection from Allergic Contact Dermatitis. Proceedings of the National Academy of Sciences, 118, e2022343118. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kim, Y.H., Kwak, M.S., Park, J.B., et al. (2016) N-Linked Glycosylation Plays a Crucial Role in the Secretion of HMGB1. Journal of Cell Science, 129, 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kwak, M.S., Kim, H.S., Lee, B., et al. (2020) Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Frontiers in Immunology, 11, Article No. 1189. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tang, D., Kang, R., Livesey, K.M., et al. (2010) Endogenous HMGB1 Regulates Autophagy. Journal of Cell Biology, 190, 881-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huebener, P., Gwak, G.Y., Pradere, J.P., et al. (2014) High-Mobility Group Box 1 Is Dispensable for Autophagy, Mitochondrial Quality Control, and Organ Function in Vivo. Cell Metabolism, 19, 539-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yu, R., Yang, D., Lei, S., et al. (2015) HMGB1 Promotes Hepatitis c Virus Replication by Interaction with Stem-Loop 4 in the Viral 5’ Untranslated Region. Journal of Virology, 90, 2332-2344. [Google Scholar] [CrossRef]
|
|
[11]
|
Paudel, Y.N., Angelopoulou, E., Piperi, C., et al. (2019) Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signaling. European Journal of Pharmacology, 858, Article ID: 172487. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nakamura, Y., Fukuta, A., Miyashita, K., et al. (2021) Perineural High-Mobility Group Box 1 Induces Mechanical Hypersensitivity through Activation of Spinal Microglia: Involvement of Glutamate-NMDA Receptor Dependent Mechanism in Spinal Dorsal Horn. Biochemical Pharmacology, 186, Article ID: 114496. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zuo, T., Yue, Y., Wang, X., et al. (2021) Luteolin Relieved DSS-Induced Colitis in Mice via HMGB1-TLR-NF-κB Signaling Pathway. Inflammation, 44, 570-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fan, H., Tang, H.B., Chen, Z., et al. (2020) Inhibiting HMGB1-RAGE Axis Prevents Pro-Inflammatory Macrophages/microglia Polarization and Affords Neuroprotection after Spinal Cord Injury. Journal of Neuroinflammation, 17, 295. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
He, C., Sun, S., Zhang, Y., et al. (2021) The Role of Irreversible Electroporation in Promoting M1 Macrophage Polarization via Regulating the HMGB1-RAGE-MAPK Axis in Pancreatic Cancer. Oncoimmunology, 10, Article ID: 1897295. [Google Scholar] [CrossRef]
|
|
[16]
|
Feng, X., Yang, R., Tian, Y., et al. (2020) HMGB1 Protein Promotes Glomerular Mesangial Matrix Deposition via TLR2 in Lupus Nephritis. Journal of Cellular Physiology, 235, 5111-5119. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, X., Li, Z., Bai, Y., et al. (2021) A Small Molecule Binding HMGB1 Inhibits Caspase-11-Mediated Lethality in Sepsis. Cell Death & Disease, 12, 402. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ning, J., Yang, R., Wang, H., et al. (2021) HMGB1 Enhances Chemotherapy Resistance in Multiple Myeloma Cells by Activating the Nuclear Factor-κB Pathway. Experimental and Therapeutic Medicine, 22, 705. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, B., Yi, X., Zhuang, T., et al. (2021) RIP1-Mediated Necroptosis Facilitates Oxidative Stress-Induced Melanocyte Death, Offering Insight into Vitiligo. Journal of Investigative Dermatology, 141, 2921-2931. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wahid, A., Chen, W., Wang, X., et al. (2021) High-Mobility Group Box 1 Serves as an Inflammation Driver of Cardiovascular Disease. Biomedicine & Pharmacotherapy, 139, Article ID: 111555. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, Z., Zhou, H., Zheng, H., et al. (2021) Autophagy-Based Unconventional Secretion of HMGB1 by Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Autophagy, 17, 529-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kim, J.Y., Lee, E.J., Seo, J., et al. (2017) Impact of High-Mobility Group Box 1 on Melanocytic Survival and Its Involvement in the Pathogenesis of Vitiligo. British Journal of Dermatology, 176, 1558-1568. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cui, T., Zhang, W., Li, S., et al. (2019) Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. Journal of Investigative Dermatology, 139, 2174-2184. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mou, K., Liu, W., Miao, Y., et al. (2018) HMGB1 Deficiency Reduces H2O2-Induced Oxidative Damage in Human Melanocytes via the Nrf2 Pathway. Journal of Cellular and Molecular Medicine, 22, 6148-6156. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jian, Z., Li, K., Song, P., et al. (2014) Impaired Activation of the Nrf2-ARE Signaling Pathway Undermines H2O2-Induced Oxidative Stress Response: A Possible Mechanism for Melanocyte Degeneration in Vitiligo. Journal of Investigative Dermatology, 134, 2221-2230. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, S., Zhu, G., Yang, Y., et al. (2017) Oxidative Stress Drives CD8+ T-Cell Skin Trafficking in Patients with Vitiligo through CXCL16 Upregulation by Activating the Unfolded Protein Response in Keratinocytes. Journal of Allergy and Clinical Immunology, 140, 177-189.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
陈红. 氧化应激下白癜风黑素细胞转染HMGB1相关变化研究[D]: [硕士学位论文]. 张家口: 河北北方学院, 2019.
|
|
[28]
|
Lv, R., Du, L., Liu, X., et al. (2019) Rosmarinic Acid Attenuates Inflammatory Responses through Inhibiting HMGB1/TLR4/NF-κB Signaling Pathway in a Mouse Model of Parkinson’s Disease. Life Sciences, 223, 158-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, G., Fu, C., Wang, L., et al. (2017) Down-Regulation of Nuclear HMGB1 Reduces Ischemia-Induced HMGB1 Translocation and Release and Protects against Liver Ischemia-Reperfusion Injury. Scientific Reports, 7, Article No. 46272. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, G., Hou, Y., Li, X., et al. (2021) Sepsis-Induced Acute Lung Injury in Young Rats Is Relieved by Calycosin through Inactivating the HMGB1/MyD88/NF-κB Pathway and NLRP3 Inflammasome. International Immunopharmacology, 96, Article ID: 107623. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Harris, J.E., Harris, T.H., Weninger, W., et al. (2012) A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN-γ for Autoreactive CD8⁺ T-Cell Accumulation in the Skin. Journal of Investigative Dermatology, 132, 1869-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, S.R., Heaton, H., Liu, L.Y., et al. (2018) Rapid Repigmentation of Vitiligo Using Tofacitinib plus Low-Dose, Narrowband UV-B Phototherapy. JAMA Dermatology, 154, 370-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Joshipura, D., Alomran, A., Zancanaro, P., et al. (2018) Treatment of Vitiligo with the Topical Janus Kinase Inhibitor Ruxolitinib: A 32-Week Open-Label Extension Study with Optional Narrow-Band Ultraviolet B. Journal of the American Academy of Dermatology, 78, 1205-1207.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
He, S., Xu, J. and Wu, J. (2022) The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8796735. [Google Scholar] [CrossRef] [PubMed]
|