|
[1]
|
赵雪雪, 门引妮, 邢亚哲. 固体氧化物燃料电池铈基电解质的研究进展[J]. 表面技术, 2020, 49(9): 125-132.
|
|
[2]
|
陈庆, 廖健淞. 一种用于燃料电池的氟代氧化铋电解质及制备方法[P]. 中国, CN201711454193.8. 2020.
|
|
[3]
|
苗利娜. 中低温固体氧化物燃料电池双层电解质结构设计及相关电极材料开发[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2020.
|
|
[4]
|
Tong, S., Wang, J., Yan, Y., et al. (2019) Emergence of Electronic Conduction in Bismuth-Oxide Eletrolyte under High Pressure. Japanese Journal of Applied Physics, 58, Article ID: 060913. [Google Scholar] [CrossRef]
|
|
[5]
|
徐旭东, 田长安, 尹奇异, 等. 固体氧化物燃料电池电解质材料的发展趋势[J]. 硅酸盐通报, 2011, 30(3): 593-594.
|
|
[6]
|
孙红燕, 森维, 易中周, 等. 中温固体氧化物燃料电池材料的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1194-1195.
|
|
[7]
|
魏丽, 陈诵英, 王琴. 中温固体氧化物燃料电池电解质材料的研究进展[J]. 稀有金属, 2002, 27(2): 290-291.
|
|
[8]
|
甄强, 何伟明. 纳米晶氧化铋基氧离子导体固体电解质的制备方法[P]. 中国, 200410025127.5, 2004-06-11.
|
|
[9]
|
卢俊彪, 张中太, 唐子龙. 固体氧化物燃料电池的研究进展[J]. 稀有金属材料与工程, 2005, 34(8): 1178-1179.
|
|
[10]
|
彭程, 张震. Bi2O3基固体电解质材料研究进展[J]. 材料导报, 2006, 10(20): 29-35.
|
|
[11]
|
魏丽, 陈诵英, 王琴. 中温固体氧化物燃料电池电解质材料的研究进展[J]. 稀有金属, 2003, 27(2): 287-292.
|
|
[12]
|
谭令, 陈海清, 刘俊, 等. 中温固体氧化物燃料电池电解质的研制[J]. 湖南有色金属, 2015, 31(6): 55-58.
|
|
[13]
|
唐安江, 王明媚, 韦德举. 双掺杂Bi2O3电解质的合成及其电性能测试[J]. 应用化工, 2014, 438(6): 1090-1092.
|
|
[14]
|
李勇, 邵刚勤, 段兴龙, 等. 固体氧化物燃料电池电解质材料的研究进展[J]. 硅酸盐通报, 2006, 25(1): 42-45.
|
|
[15]
|
苏莎, 陈海清, 谭令. 氧化铋基固体氧化物燃料电池电解质研究进展[J]. 湖南有色金属, 2014, 30(4): 45-48.
|
|
[16]
|
Harwig, H.A. and Weenk, J.W. (1978) Phase Relations in Bismuthsesquioxide. Zeitschrift fur Anorganische Chemie, 444, 167-177. [Google Scholar] [CrossRef]
|
|
[17]
|
Yoo, E.H., Donald, R.V. and Khalil, A. (2003) Flame-Retardant Additives for Lithium-Ion Batteries. J Power Sources, 119, 383-387. [Google Scholar] [CrossRef]
|
|
[18]
|
马金福, 耿桂宏, 卢勇军, 等. CaO掺杂Bi2O3基电解质材料的改性研究[J]. 电源技术, 2013(10): 1773-1775.
|
|
[19]
|
Takahashi, T., Wabara, H. and Esaka, T. (1977) High Oxide Ion Conduction in Sintered Oxide of the System Bi2O3-M2O5. Journal of the Electrochemistry Society, 124, 1563-1569. [Google Scholar] [CrossRef]
|
|
[20]
|
陈海清, 谭令, 苏莎, 等. 氧化钪掺杂氧化铋固体氧化物燃料电池电解质及制备方法[P]. 中国, CN103904351B. 2016.
|
|
[21]
|
Takahashi, T. and Iwahara, H. (1978) Oxide Ion Conductors Based on Bismuth Sesquioxide. Materials Research Bulletin, 13, 1447-1453. [Google Scholar] [CrossRef]
|
|
[22]
|
Watanabe, A. (1996) Phase Equilibria in the System Bi2O3-Y2O3: No Possibility of δ-Bi2O3 Stabilization. Solid State Ionics, 86, 1427-1430. [Google Scholar] [CrossRef]
|
|
[23]
|
梁广川, 刘文西, 陈玉如, 等. Bi2O3基固体电解质材料改性研究[J]. 功能材料, 2001, 32(6): 627-629.
|
|
[24]
|
Watanabe, A. and Kikuchi, T. (1986) Cubic-Hexagonal Transformation of Yttria-Stabilized Σ-Bismuth Sesquioxide, Bi2-2xY2xO3 (x = 0.215 0.235). Solid State Ionics, 21, 287-291. [Google Scholar] [CrossRef]
|
|
[25]
|
Esaka, T., Mangahara, T. and Iwahara, H. (1989) Oxide Ion Conduction in the Sintered Oxides of the System Bi2O3-MO2 (M = Ti, Sn, Zr, Te). Solid State Ionics, 36, 129-132. [Google Scholar] [CrossRef]
|
|
[26]
|
Tompsett, G.A., Sammes, N.M., Zhang, Y., et al. (1998) Characterisation of WO3-, V2O5-, and P2O5-Doped Bismuth Oxides by X-Ray Diffraction and Raman Spectroscopy. Solid State Ionics, 113-115, 631-638. [Google Scholar] [CrossRef]
|
|
[27]
|
Watanabe, A. and Sekita, M. (2005) Stabilized δ-Bi2O3 Phase in the System Bi2O3-Er2O3-WO3 and Its Oxide-Ion Conduction. Solid State Ionics, 176, 2429-2433. [Google Scholar] [CrossRef]
|
|
[28]
|
Zha, S.W., Cheng, J.G., Liu, Y., et al. (2003) Electrical Properties of Pure and Sr-Doped Bi2Al4O9 Ceramics. Solid State Ionics, 21, 197-200. [Google Scholar] [CrossRef]
|
|
[29]
|
Vanier, R.N., Mairesse, G., Abraham, F., et al. (1994) Double Substitutions in Bi4V2O11. Solid State Ionics, 70, 248-252. [Google Scholar] [CrossRef]
|