|
[1]
|
McGibbon, C.A. (1995) Phantom Maps. In: James, I.M., Ed., Handbook of Algebraic Topology, Elsevier Science B.V., Amsterdam, 1209-1257. [Google Scholar] [CrossRef]
|
|
[2]
|
Neeman, A. (1992) The Brown Representability Theorem and Phantomless Triangulated Categories. Journal of Algebra, 151, 118-155. [Google Scholar] [CrossRef]
|
|
[3]
|
Herzog, I. (2008) Contravariant Functors on the Category of Finitely Presented Modules. Israel
Journal of Mathematics, 167, 347-410. [Google Scholar] [CrossRef]
|
|
[4]
|
Mao, L.X. (2016) Precovers and Preenvelopes by Phantom and Ext-Phantom Morphisms.
Communications in Algebra, 44, 1704-1721. [Google Scholar] [CrossRef]
|
|
[5]
|
Mao, L.X. (2020) Neat-Phantom and Clean-Cophantom Morphisms. Journal of Algebra and Its Applications, 20, Article ID: 2150172. [Google Scholar] [CrossRef]
|
|
[6]
|
Asadollahi, J., Hemat, S. and Vahed, R. (2020) Gorenstein Flat Phantom Morphisms. Communications in Algebra, 48, 2167-2182. [Google Scholar] [CrossRef]
|
|
[7]
|
Ding, N.Q., Li, Y.L. and Mao, L.X. (2009) Strongly Gorenstein Flat Modules. Journal of the Australian Mathematical Society, 86, 323-338. [Google Scholar] [CrossRef]
|
|
[8]
|
Mao, L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein Flat Modules. Jour-
nal of Algebra and Its Applications, 7, 491-506. [Google Scholar] [CrossRef]
|
|
[9]
|
Gillespie, J. (2010) Model Structures on Modules over Ding-Chen Rings. Homology, Homotopy
and Applications, 12, 61-73. [Google Scholar] [CrossRef]
|
|
[10]
|
Gillespie, J. (2017) On Ding Injective, Ding Projective, and Ding Flat Modules and Complexes.
Rocky Mountain Journal of Mathematics, 47, 2641-2673. [Google Scholar] [CrossRef]
|
|
[11]
|
Fu, X.H. and Herzog, I. (2016) Powers of the Phantom Ideal. Proceedings of the London Mathematical Society, 112, 714-752. [Google Scholar] [CrossRef]
|
|
[12]
|
Auslander, M. and Solberg, O. (1993) Relative Homology and Representation Theory I: Reative Homology and Homologically Finite Categories. Communications in Algebra, 21, 2995-3031. [Google Scholar] [CrossRef]
|
|
[13]
|
Fu, X.H., Guil Asensio, P.A., Herzog, I. and Torrecillas, B. (2013) Ideal Approximation Theory.
Advances in Mathematics, 244, 750-790. [Google Scholar] [CrossRef]
|