SPME法分析玉米芯物理吸附恶臭气体特征研究
Solid Phase Microextraction Sampling for Evaluation of Absorbing Characteristic of Corn-Cob
DOI: 10.12677/bp.2012.21004, PDF, HTML, XML, 下载: 3,412  浏览: 10,832  国家科技经费支持
作者: 陈晓亮, 孟瑜磊, 席北斗, 王世平
关键词: 玉米芯恶臭气体固相微萃取吸附
Corn-Cob; Odors; SPME; Absorption
摘要: 本研究考察以农副产品玉米芯为填料净化恶臭气体的效果,并以SPME-GC(固相微萃取-气相)联用作为监测方法。实验对固相微萃取的萃取头类型、萃取时间及条件进行了优化,对气相色谱的色谱条件进行了筛选,针对填料玉米芯的含水率、进气流量、填料高度等因素对净化效果的影响进行了重点探索,最后考察了最优条件下玉米芯对恶臭气体的物理净化效果。结果表明:采用75 μm CAR/PDMS萃取头吸附恶臭气体5 min,可以实现恶臭气体的有效检测;气相色谱的升温程序能够有效分离三种硫醇物质,FPD检测器能够实现有效检测;玉米芯吸附恶臭气体的最优条件为含水率70%、自然堆积密度0.12 g∙cm–3、填料高度65 cm、进气流速0.1 m3∙h–1;最优条件下,吸附塔动态吸附恶臭气体47 h,对恶臭气体净化率维持在85%~95%,效果良好。
Abstract: This study explored the decontamination effect of corn-cob on odors by using SPME-GC (solid phase micro-extraction, gas chromatography). The type of extraction fiber, the time and condition of the extraction on SPME were optimized, and the chromatographic condition on GC was screened. The study focused on investigating the optimum condition of the decontamination effect of corn-cob including the moisture content, the inlet air flow rate and the filling height. Results: The study indicated that using 75 μm CAR/PDMS extraction fiber to absorb odors for 5 minutes could effectively test the odors; three mercaptan could be separated by temperature-programming and effectively determine by FPD; the optimum condition of absorption was moisture content 70%, natural packing density 0.12 g∙cm–3, filling height 65 cm and inlet air flow rate 0.1 m3∙h–1. Under the optimum condition, the decontaminating efficiency of corn-cob on odors maintained at 85%~95% in 47 h.
文章引用:陈晓亮, 孟瑜磊, 席北斗, 王世平. SPME法分析玉米芯物理吸附恶臭气体特征研究[J]. 生物过程, 2012, 2(1): 21-26. http://dx.doi.org/10.12677/bp.2012.21004

参考文献

[1] S. Mudliar, B. Giri, K. Padoley, et al. Bioreactors for treatment of VOCs and odours—A review. Journal of Environmental Management, 2010, 91(5): 1039-1054.
[2] 陈良杰. 颗粒活性炭对多组分有机气体的吸附研究[D]. 北京化工大学, 2007.
[3] 张洪林, 耿安朝, 闫光绪等. 流化吸附法净化处理沥青烟气的研究[J]. 环境工程, 1995, 13(l): 21-24.
[4] J. Nicolle, V. Desauziers, P. Mocho, et al. Optimization of FLEC-SPME for field passive sampling of VOCS emitted from solid building materials. Talanta, 2009, 80(2): 730-737.
[5] J. Nicolle, V. Desauziers and P. Mocho. Solid phase microextraction sampling for a rapid and simple on-site evaluation of volatile organic compounds emitted from building materials. Journal of chromatography A, 2008, 1208(1-2): 10-15.
[6] P. Toscano, B. Gioli, S. Dugheri, et al. Locating industrial VOC sources with aircraft observations. Environmental Pollution, 2011, 159(5): 1174-1182.
[7] 董英. 玉米芯营养价值及其综合利用[J]. 粮食与油脂, 2003, 5: 27-28.
[8] 王文华, 冯咏梅, 常秀莲等. 玉米芯对废水中铅的吸附研究[J]. 水处理技术, 2004, 30(2): 95-98.
[9] 王开峰, 彭娜, 涂常青等. 典型农业废弃物对水中Cr(VI)的吸附特性研究[J]. 水处理技术, 2010, 36(5): 58-62.
[10] 范建凤, 孔慧勇. 玉米芯对水中镍吸附效果的研究[J]. 环境与健康杂志, 2010, 27(3): 235-237.
[11] H. Jorio, L. Bibeau, G. Viel, et al. Effect of gas flow rate and inlet concentration on xylene vapors biofiltration performance. Chemical Engineering, 2000, 76(13): 209-221.
[12] G. A. Sorial, F. L. Smith, M. T. Suidan, et al. Evaluation of trickle-bed air biofilter performance for styrene removal. Water Research, 1998, 32(5): 1593-1603.
[13] 李顺义, 杨松波, 李红丽等. 玉米芯填料生物过滤法净化含氨废气研究[J]. 高校化学工程学报, 2011, 25(2): 351-355.