|
[1]
|
Romantsik, O., Bruschettini, M. and Ley, D. (2019) Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies. Neoreviews, 20, e636-e652. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chiarelli, A.M., Ses-tieri, C., Navarra, R., et al. (2021) Distinct Effects of Prematurity on MRI Metrics of Brain Functional Connectivity, Ac-tivity, and Structure: Univariate and Multivariate Analyses. Human Brain Mapping, 42, 3593-3607. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Motavaf, M. and Piao, X. (2021) Oligodendrocyte Development and Im-plication in Perinatal White Matter Injury. Frontiers in Cellular Neuroscience, 15, Article ID: 764486. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Starr, R., De Jesus, O., Shah, S.D., et al. (2022) Periventricular and Intraventricular Hemorrhage. StatPearls, Treasure Island.
|
|
[5]
|
Yates, N., Gunn, A.J., Bennet, L., et al. (2021) Prevent-ing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. International Journal of Molecular Sciences, 22, Article No. 1671. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pendleton, A.L., Wesolowski, S.R., Regnault, T.R.H., et al. (2021) Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Frontiers in Endocrinology (Lausanne), 12, Article ID: 612888. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Q., Lv, H., Lu, L., et al. (2019) Neonatal Hypoxic-Ischemic Encephalopathy: Emerging Therapeutic Strategies Based on Pathophysiologic Phases of the Injury. The Journal of Ma-ternal-Fetal & Neonatal Medicine, 32, 3685-3692. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Martini, S., Castellini, L., Parladori, R., et al. (2021) Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxi-dants (Basel), 10, Article No. 2012. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Herrera, T.I., Edwards, L., Malcolm, W.F., et al. (2018) Outcomes of Preterm Infants Treated with Hypothermia for Hypoxic-Ischemic Encephalopathy. Early Human Development, 125, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lademann, H., Abshagen, K., Janning, A., et al. (2021) Long-Term Outcome after Asphyxia and Therapeutic Hypothermia in Late Preterm Infants: A Pilot Study. Healthcare (Basel), 9, Article No. 994. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lyu, H., Sun, D.M., Ng, C.P., et al. (2022) Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats with Hypoxic Ischemia. Frontiers in Cellular Neuroscience, 16, Article ID: 823320. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liao, Z., Zhou, X., Li, S., et al. (2022) Activation of the AKT/GSK-3β/β-Catenin Pathway via Photobiomodulation Therapy Promotes Neural Stem Cell Proliferation in Neonatal Rat Models of Hypoxic-Ischemic Brain Damage. Annals of Translational Medicine, 10, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Obst, S., Herz, J., Alejandre Alcazar, M.A., et al. (2022) Perinatal Hy-peroxia and Developmental Consequences on the Lung-Brain Axis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5784146. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dewan, M.V., Serdar, M., Van De Looij, Y., et al. (2020) Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomye-lination in the Developing Brain. Frontiers in Neurology, 11, Article No. 804. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dettman, R.W. and Dizon, M.L.V. (2021) How Lung Injury and Therapeutic Oxygen Could Alter White Matter Development. Journal of Neuroscience Research. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yap, V. and Perlman, J.M. (2020) Mechanisms of Brain Injury in Newborn Infants Associated with the Fetal Inflammatory Response Syndrome. Seminars in Fetal & Neonatal Medicine, 25, Article ID: 101110. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lawrence, S.M. and Wynn, J.L. (2018) Chorioamnionitis, IL-17A, and Fetal Origins of Neurologic Disease. American Journal of Reproductive Immunology, 79, e12803. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cappelletti, M., Presicce, P. and Kallapur, S.G. (2020) Immunobiology of Acute Chorioamnionitis. Frontiers in Immunology, 11, Article No. 649. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Korzeniewski, S.J., Romero, R., Cortez, J., et al. (2014) A “Mul-ti-Hit” Model of Neonatal White Matter Injury: Cumulative Contributions of Chronic Placental Inflammation, Acute Fetal Inflammation and Postnatal Inflammatory Events. Journal of Perinatal Medicine, 42, 731-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kitase, Y., Chin, E.M., Ramachandra, S., et al. (2021) Sustained Pe-ripheral Immune Hyper-Reactivity (SPIHR): An Enduring Biomarker of Altered Inflammatory Responses in Adult Rats after Perinatal Brain Injury. Journal of Neuroinflammation, 18, 242. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Matei, A., Montalva, L., Goodbaum, A., et al. (2020) Neurode-velopmental Impairment in Necrotising Enterocolitis Survivors: Systematic Review and Meta-Analysis. Archives of Dis-ease in Childhood. Fetal and Neonatal Edition, 105, 432-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Synnes, A., Luu, T.M., Moddemann, D., et al. (2017) De-terminants of Developmental Outcomes in a Very Preterm Canadian Cohort. Archives of Disease in Childhood. Fetal and Neonatal Edition, 102, F235-F234. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nolan, L.S., Rimer, J.M. and Good, M. (2020) The Role of Human Milk Oligosaccharides and Probiotics on the Neonatal Microbiome and Risk of Necrotizing Enterocolitis: A Nar-rative Review. Nutrients, 12, Article No. 3052. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Burge, K., Bergner, E., Gunasekaran, A., et al. (2020) The Role of Gly-cosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients, 12, Article No. 546. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, Y., Song, J., Sun, H., et al. (2020) Erythropoietin Prevents Necrotizing Enterocolitis in Very Preterm Infants: A Randomized Controlled Trial. Journal of Translational Medicine, 18, Article No. 308. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Paton, M.C.B., Allison, B.J., Fahey, M.C., et al. (2019) Umbil-ical Cord Blood versus Mesenchymal Stem Cells for Inflammation-Induced Preterm Brain Injury in Fetal Sheep. Pediatric Research, 86, 165-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, L., Mcdonald, C., Yawno, T., et al. (2022) Umbilical Cord Blood and Cord Tissue-Derived Cell Therapies for Neonatal Morbidities: Current Status and Future Challenges. Stem Cells Translational Medicine, 11, 135-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ginsberg, Y., Gutzeit, O., Hadad, S., et al. (2021) Correction to: Ma-ternal Progesterone Treatment Reduces Maternal Inflammation-Induced Fetal Brain Injury in a Mouse Model of Preterm Birth. Reproductive Sciences, 28, 177. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Brown, M.K., Poeltler, D.M., Hassen, K.O., et al. (2018) Inci-dence of Hypocapnia, Hypercapnia, and Acidosis and the Associated Risk of Adverse Events in Preterm Neonates. Res-piratory Care, 63, 943-949. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Travers, C.P. and Carlo, W.A. (2021) Carbon Dioxide and Brain Inju-ry in Preterm Infants. Journal of Perinatology, 41, 183-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hoffman, S.B., Lakhani, A. and Viscardi, R.M. (2021) The As-sociation between Carbon Dioxide, Cerebral Blood Flow, and Autoregulation in the Premature Infant. Journal of Perina-tology, 41, 324-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Goswami, I.R., Abou Mehrem, A., Scott, J., et al. (2021) Meta-bolic Acidosis Rather than Hypo/Hypercapnia in the First 72 Hours of Life Associated with Intraventricular Hemorrhage in Preterm Neonates. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 3874-3882. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Limperopoulos, C., Gauvreau, K.K., O’Leary, H., et al. (2008) Cerebral Hemodynamic Changes during Intensive Care of Preterm Infants. Pediatrics, 122, e1006-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wong, S.K., Chim, M., Allen, J., et al. (2021) Carbon Dioxide Levels in Neonates: What Are Safe Parameters? Pediatric Research, 91, 1049-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Waitz, M., Nusser, S., Schmid, M.B., et al. (2016) Risk Factors Associated with Intraventricular Hemorrhage in Preterm Infants with ≤ 28 Weeks Gestational Age. Klinische Pädiatrie, 228, 245-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Çizmeci, M.N., Akin, M.A. and Özek, E. (2021) Turkish Neonatal Society Guideline on the Diagnosis and Management of Germinal Matrix Hemorrhage-Intraventricular Hemorrhage and Related Complications. Turkish Archives of Pediatrics, 56, 499-512.
|
|
[37]
|
Bonanno, C. and Wapner, R.J. (2012) Ante-natal Corticosteroids in the Management of Preterm Birth: Are We Back Where We Started? Obstetrics and Gynecology Clinics of North America, 39, 47-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Foix-L’hélias, L., Marret, S., Ancel, P.Y., et al. (2008) Impact of the Use of Antenatal Corticosteroids on Mortality, Cerebral Lesions and 5-Year Neurodevelopmental Outcomes of Very Preterm Infants: The EPIPAGE Cohort Study. BJOG, 115, 275-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mcgoldrick, E., Stewart, F., Parker, R., et al. (2020) Ante-natal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, 12, Cd004454. [Google Scholar] [CrossRef]
|
|
[40]
|
Ting, J.Y., Kingdom, J.C. and Shah, P.S. (2018) Antenatal Glucocorticoids, Magnesium Sulfate, and Mode of Birth in Preterm Fetal Small for Gestational Age. American Journal of Obstetrics & Gynecology, 218, S818-s828. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Blankenship, S.A., Brown, K.E., Simon, L.E., et al. (2020) Ante-natal Corticosteroids in Preterm Small-for-Gestational Age Infants: A Systematic Review and Meta-Analysis. American Journal of Obstetrics & Gynecology, 2, Article ID: 100215. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hodges, R.J. and Wallace, E.M. (2012) Mending a Growth-Restricted Fetal Heart: Should We Use Glucocorticoids? The Journal of Maternal-Fetal & Neonatal Medicine, 25, 2149-2153. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Barrington, K.J. (2001) The Adverse Neu-ro-Developmental Effects of Postnatal Steroids in the Preterm Infant: A Systematic Review of RCTs. BMC Pediatrics, 1, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lear, C.A., Davidson, J.O., Mackay, G.R., et al. (2018) Antenatal Dexamethasone before Asphyxia Promotes Cystic Neural Injury in Preterm Fetal Sheep by Inducing Hyper-glycemia. Journal of Cerebral Blood Flow & Metabolism, 38, 706-718. [Google Scholar] [CrossRef]
|
|
[45]
|
Doyle, L.W., Cheong, J.L., Hay, S., et al. (2021) Late (≥ 7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Data-base of Systematic Reviews, 11, Cd001145. [Google Scholar] [CrossRef]
|
|
[46]
|
Doyle, L.W., Cheong, J.L., Hay, S., et al. (2021) Early (< 7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, 10, Cd001146.
|
|
[47]
|
Altal, O.F., Al Sharie, A.H., Al Zu’bi, Y.O., et al. (2021) A Comparative Study of the Respiratory Neonatal Outcomes Utilizing Dexamethasone Sodium Phosphate versus a Mixture of Betamethasone Dipropionate and Betamethasone Sodium Phosphate as an Antenatal Corticosteroid Therapy. International Journal of General Medicine, 14, 9471-9481. [Google Scholar] [CrossRef]
|
|
[48]
|
Plows, J.F., Stanley, J.L., Baker, P.N., et al. (2018) The Pathophysi-ology of Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 19, Article No. 3342. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Azad, M.B., Moyce, B.L., Guillemette, L., et al. (2017) Diabetes in Pregnancy and Lung Health in Offspring: Developmental Origins of Respiratory Disease. Paediatric Respiratory Re-views, 21, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Morsing, E. and Maršál, K. (2014) Pre-Eclampsia—An Additional Risk Factor for Cognitive Impairment at School Age after Intrauterine Growth Restriction and Very Preterm Birth. Early Human Development, 90, 99-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Burton, G.J., Redman, C.W., Roberts, J.M., et al. (2019) Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ, 366, l2381. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Liu, X., Chen, Q., Tsai, H.J., et al. (2014) Maternal Preconception Body Mass Index and Offspring Cord Blood DNA Methylation: Exploration of Early Life Origins of Disease. Environmental and Molecular Mutagenesis, 55, 223-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lende, M. and Rijhsinghani, A. (2020) Gestational Diabetes: Overview with Emphasis on Medical Management. International Journal of Environmental Research and Public Health, 17, Article No. 9573. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Phipps, E.A., Thadhani, R., Benzing, T., et al. (2019) Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nature Reviews Nephrology, 15, 275-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Siassakos, D., et al. (2019) Significant Intraventricular Hemor-rhage Is More Likely in Very Preterm Infants Born by Vaginal Delivery: A Multi-Centre Retrospective Cohort Study. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 477-482.
|
|
[56]
|
Poryo, M., Boeckh, J.C., Gortner, L., et al. (2018) Ante-, Peri- and Postnatal Factors Associated with Intraventricular Hemorrhage in Very Premature Infants. Early Human Development, 116, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kim, J.K., Chang, Y.S., Hwang, J.H., et al. (2021) Cesare-an Section Was Not Associated with Mortality or Morbidities Advantage in Very Low Birth Weight Infants: A Nation-wide Cohort Study. Scientific Reports, 11, Article No. 20264. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Farquhar, C. and Marjoribanks, J. (2018) Assisted Reproductive Technology: An Overview of Cochrane Reviews. Cochrane Database of Systematic Reviews, 8, Cd010537. [Google Scholar] [CrossRef]
|
|
[59]
|
Sunderam, S., Kissin, D.M., Crawford, S.B., et al. (2017) Assisted Reproductive Technology Surveillance—United States, 2014. MMWR Surveillance Summaries, 66, 1-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Blesa, M., Sullivan, G., Anblagan, D., et al. (2019) Early Breast Milk Exposure Modifies Brain Connectivity in Preterm Infants. Neuroimage, 184, 431-439. [Google Scholar] [CrossRef] [PubMed]
|