|
[1]
|
Uchida, K. (2022) Waste Clearance in the Brain and Neuroinflammation: A Novel Perspective on Biomarker and Drug Target Discovery in Alzheimer’s Disease. Cells, 11, Article No. 919. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Soria Lopez, J.A., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. In: Handbook of Clinical Neurology, Vol. 167, Elsevier, Amsterdam, 231-255. [Google Scholar] [CrossRef]
|
|
[3]
|
Jia, L., Du, Y., Chu, L., et al. (2020) Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. The Lancet Public Health, 5, e661-e671. [Google Scholar] [CrossRef]
|
|
[4]
|
Jia, J., Wei, C., Chen, S., et al. (2018) The Cost of Alz-heimer’s Disease in China and Re-Estimation of Costs Worldwide. Alzheimer’s & Dementia, 14, 483-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Dis-ease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554. [Google Scholar] [CrossRef]
|
|
[6]
|
Olsson, B., Lautner, R., Andreasson, U., et al. (2016) CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. The Lancet Neurology, 15, 673-684. [Google Scholar] [CrossRef]
|
|
[7]
|
Suárez-Calvet, M., Karikari, T.K., Ashton, N.J., et al. (2020) Novel Tau Biomarkers Phosphorylated at T181, T217 or T231 Rise in the Initial Stages of the Preclinical Alzheimer’s Continuum When Only Subtle Changes in Aβ Pathology Are Detected. EMBO Molecular Medicine, 12, e12921.
|
|
[8]
|
Blennow, K., Hampel, H., Weiner, M., et al. (2010) Cerebrospinal Fluid and Plasma Biomarkers in Alz-heimer Disease. Nature Reviews Neurology, 6, 131-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, J., Qiao, F., Shang, S., et al. (2018) Elevation of Plasma Amyloid-β Level Is More Significant in Early Stage of Cognitive Impairment: A Population-Based Cross-Sectional Study. Journal of Alzheimer’s Disease, 64, 61-69. [Google Scholar] [CrossRef]
|
|
[10]
|
Nakamura, A., Kaneko, N., Villemagne, V.L., et al. (2018) High Per-formance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature, 554, 249-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Verberk, I.M.W., Slot, R.E., Verfaillie, S.C.J., et al. (2018) Plasma Am-yloid as Prescreener for the Earliest Alzheimer Pathological Changes. Annals of Neurology, 84, 648-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mielke, M.M., Hagen, C.E., Wennberg, A.M.V., et al. (2017) Association of Plasma Total Tau Level with Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on Aging. JAMA Neurology, 74, 1073-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, C.C., Chiu, M.J., Chen, T.F., et al. (2018) Assay of Plasma Phosphorylated Tau Protein (Threonine 181) and Total Tau Protein in Early-Stage Alzheimer’s Disease. Journal of Alzheimer’s Disease, 61, 1323-1332. [Google Scholar] [CrossRef]
|
|
[14]
|
Calsolaro, V. and Edison, P. (2016) Neuroinflammation in Alzheimer’s Disease: Current Evidence and Future Directions. Alzheimer’s & Dementia, 12, 719-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Italiani, P., Puxeddu, I., Napoletano, S., et al. (2018) Circulating Levels of IL-1 Family Cytokines and Receptors in Alzheimer’s Disease: New Markers of Disease Progression? Journal of Neuroinflammation, 15, 342. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, L., Gao, T., Cai, T., et al. (2020) Cerebrospinal Fluid Lev-els of YKL-40 in Prodromal Alzheimer’s Disease. Neuroscience Letters, 715, Article ID: 134658. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Villar-Piqué, A., Schmitz, M., Hermann, P., et al. (2019) Plasma YKL-40 in the Spectrum of Neurodegenerative Dementia. Journal of Neuroinflammation, 16, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Heslegrave, A., Heywood, W., Paterson, R., et al. (2016) In-creased Cerebrospinal Fluid Soluble TREM2 Concentration in Alzheimer’s Disease. Molecular Neurodegeneration, 11, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lee, W.J., Liao, Y.C., Wang, Y.F., et al. (2018) Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: A Two-Year Follow-Up Study. Scientific Reports, 8, Article No. 1280. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shen, X.N., Niu, L.D., Wang, Y.J., et al. (2019) Inflammatory Markers in Alzheimer’s Disease and Mild Cognitive Impairment: A Meta-Analysis and Systematic Review of 170 Stud-ies. Journal of Neurology, Neurosurgery and Psychiatry, 90, 590-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Montagne, A., Nation, D.A., Sagare, A.P., et al. (2020) APOE4 Leads to Blood-Brain Barrier Dysfunction Predicting Cognitive Decline. Nature, 581, 71-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Skillbäck, T., Delsing, L., Synnergren, J., et al. (2017) CSF/Serum Albumin Ratio in Dementias: A Cross-Sectional Study on 1861 Patients. Neurobiology of Aging, 59, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
杨红旗, 陈生弟. 神经丝蛋白轻链在阿尔茨海默病诊断中的价值[J]. 阿尔茨海默病及相关病, 2020, 3(3): 177-181.
|
|
[24]
|
Mattsson, N., Insel, P.S., Palmqvist, S., et al. (2016) Cerebrospinal Fluid Tau, Neurogranin, and Neurofilament Light in Alzheimer’s Disease. EMBO Molecular Medi-cine, 8, 1184-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hu, X., Yang, Y. and Gong, D. (2017) A Meta-Analysis of Cerebrospinal Fluid Visinin-Like Protein-1 in Alzheimer’s Disease Patients Relative to Healthy Con-trols and Mild Cognitive Impairment Patients. Neurosciences (Riyadh), 22, 94-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Portelius, E., Zetterberg, H., Skillbäck, T., et al. (2015) Cere-brospinal Fluid Neurogranin: Relation to Cognition and Neurodegeneration in Alzheimer’s Disease. Brain, 138, 3373-3385. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jia, L., Zhu, M., Kong, C., et al. (2021) Blood Neu-ro-Exosomal Synaptic Proteins Predict Alzheimer’s Disease at the Asymptomatic Stage. Alzheimer’s & Dementia, 17, 49-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zarrouk, A., Debbabi, M., Bezine, M., et al. (2018) Lipid Biomarkers in Alzheimer’s Disease. Current Alzheimer Research, 15, 303-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Varma, V.R., Oommen, A.M., Varma, S., et al. (2018) Brain and Blood Metabolite Signatures of Pathology and Progression in Alzheimer Disease: A Targeted Metabolomics Study. PLOS Medicine, 15, e1002482. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Nho, K., Kueider-Paisley, A., Ahmad, S., et al. (2019) Associ-ation of Altered Liver Enzymes with Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebro-spinal Fluid Biomarkers. JAMA Network Open, 2, e197978. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dong, H., Li, J., Huang, L., et al. (2015) Serum Mi-croRNA Profiles Serve as Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Disease Markers, 2015, Article ID: 625659. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mahalingam, S. and Chen, M.K. (2019) Neuroimaging in Dementias. Seminars in Neurology, 39, 188-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
De Carli, F., Nobili, F., Pagani, M., et al. (2019) Accuracy and Gen-eralization Capability of an Automatic Method for the Detection of Typical Brain Hypometabolism in Prodromal Alz-heimer Disease. European Journal of Nuclear Medicine and Molecular Imaging, 46, 334-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
陈超, 招建华, 卓文燕, 等. 阿尔茨海默病的18F-FDG PET脑显像特征及意义[J]. 中国实用神经疾病杂志, 2020, 23(17): 1484-1489.
|
|
[35]
|
Kadir, A., Almkvist, O., Forsberg, A., et al. (2012) Dynamic Changes in PET Amyloid and FDG Imaging at Different Stages of Alzheimer’s Disease. Neurobiology of Aging, 33, 198.e1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dupont, A.C., Largeau, B., Santiago Ribeiro, M.J., et al. (2017) Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. International Journal of Molecular Sciences, 18, 785. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Harper, L., Bouwman, F., Burton, E.J., et al. (2017) Patterns of Atro-phy in Pathologically Confirmed Dementias: A Voxelwise Analysis. Journal of Neurology, Neurosurgery and Psychia-try, 88, 908-916. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Vemuri, P., Simon, G., Kantarci, K., et al. (2011) Antemortem Dif-ferential Diagnosis of Dementia Pathology Using Structural MRI: Differential-STAND. Neuroimage, 55, 522-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chandra, A., Dervenoulas, G. and Politis, M. (2019) Alz-heimer’s Disease Neuroimaging Initiative. Magnetic Resonance Imaging in Alzheimer’s Disease and Mild Cognitive Im-pairment. Journal of Neurology, 266, 1293-1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Qin, L., Guo, Z., McClure, M.A., et al. (2021) White Matter Changes from Mild Cognitive Impairment to Alzheimer’s Disease: A Meta-Analysis. Acta Neurologica Belgica, 121, 1435-1447. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mirzaei, N., Shi, H., Oviatt, M., et al. (2020) Alz-heimer’s Retinopathy: Seeing Disease in the Eyes. Frontiers in Neuroscience, 14, Article No. 921. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Asanad, S., Fantini, M., Sultan, W., et al. (2020) Retinal Nerve Fi-ber Layer Thickness Predicts CSF Amyloid/Tau Before Cognitive Decline. PLOS ONE, 15, e0232785. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ma, L., Chen, J., Wang, R., et al. (2015) The Level of Alz-heimer-Associated Neuronal Thread Protein in Urine May Be an Important Biomarker of Mild Cognitive Impairment. Journal of Clinical Neuroscience, 22, 649-652. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ashton, N.J., Ide, M., Zetterberg, H., et al. (2019) Salivary Bi-omarkers for Alzheimer’s Disease and Related Disorders. Neurology and Therapy, 8, 83-94. [Google Scholar] [CrossRef] [PubMed]
|