惯性广义Mann-Halpern算法及其应用
Inertial Generalized Mann-Halpern Algorithm and Its Application
摘要: 本文主要研究Hilbert空间中非扩张映射的不动点问题。提出了一种惯性广义Mann-Halpern算法。在一定条件下证明了算法的强收敛性。将算法应用于求解Fermat-Weber定位问题,并给出数值实验结果。相比较已有算法,该算法在参数的选取上更具灵活性。
Abstract: We considered the fixed point problem of nonexpansive mapping in Hilbert space. We proposed an inertial generalized Mann-Halpern algorithm. Giving certain conditions, we proved the strong convergence of the algorithm. Then we applied the algorithm to solve the Fermat-Weber location problem, and gave a numerical experiment. Com- pared with algorithms had been proposed before, our algorithm has the flexibility on choosing parameters.
文章引用:许云霞. 惯性广义Mann-Halpern算法及其应用[J]. 应用数学进展, 2022, 11(8): 6087-6098. https://doi.org/10.12677/AAM.2022.118641

参考文献

[1] Mann, W.R. (1953) Mean Value Methods in Iteration. Proceedings of the American Mathe- matical Society, 4, 993-993. [Google Scholar] [CrossRef
[2] Reich, S. (1979) Weak Convergence Theorems for Nonexpansive Mappings in Banach Spaces. Journal of Mathematical Analysis and Applications, 67, 274-276. [Google Scholar] [CrossRef
[3] Halpern, B. (1967) Fixed Points of Nonexpanding Maps. Bulletin of the American Mathemat- ical Society, 73, 957-961. [Google Scholar] [CrossRef
[4] Wittmann, R. (1992) Approximation of Fixed Points of Nonexpansive Mappings. Archiv der Mathematik, 58, 486-491. [Google Scholar] [CrossRef
[5] Polyak, B.T. (1964) Some Methods of Speeding up the Convergence of Iteration Methods. USSR Computational Mathematics and Mathematical Physics, 4, 1-17. [Google Scholar] [CrossRef
[6] Tan, B., Zhou, Z. and Qin, X. (2020) Accelerated Projection-Based Forward-Backward Split- ting Algorithms for Monotone Inclusion Problems. Journal of Applied Analysis and Computa- tion, 10, 2184-2197. [Google Scholar] [CrossRef
[7] Tan, B., Xu, S. and Li, S. (2020) Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems. Mathematics, 8, Article 236. [Google Scholar] [CrossRef
[8] Maing´e, P.E. (2008) Convergence Theorems for Inertial KM-Type Algorithms. Journal of Computational and Applied Mathematics, 219, 223-236. [Google Scholar] [CrossRef
[9] Combettes, P.L. and Glaudin, L.E. (2017) Quasi-Nonexpansive Iterations on the Affine Hull of Orbits: From Mann’s Mean Value Algorithm to Inertial Methods. SIAM Journal on Opti- mization, 27, 2356-2380. [Google Scholar] [CrossRef
[10] Shehu, Y. and Gibali, A. (2020) Inertial Krasnoselskii-Mann Method in Banach Spaces. Math- ematics, 8, Article 638. [Google Scholar] [CrossRef
[11] Artsawang, N. and Ungchittrakool, K. (2020) Inertial Mann-Type Algorithm for a Nonexpan- sive Mapping to Solve Monotone Inclusion and Image Restoration Problems. Symmetry, 12, Article 750. [Google Scholar] [CrossRef
[12] Tan, B., Zhou, Z. and Li, S. (2020) Strong Convergence of Modified Inertial Mann Algorithms for Nonexpansive Mappings. Mathematics, 8, Article 462. [Google Scholar] [CrossRef
[13] Bauschke, H.H. and Combettes, P.L. (2011) Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York. [Google Scholar] [CrossRef
[14] Kanzow, C. and Shehu, Y. (2017) Generalized Krasnoselskii-Mann-Type Iterations for Non- expansive Mappings in Hilbert Spaces. Computational Optimization and Applications, 67, 595-620. [Google Scholar] [CrossRef
[15] He, S. and Yang, C. (2013) Solving the Variational Inequality Problem Defined on Intersection of Finite Level Sets. Abstract and Applied Analysis, 2013, Article ID: 942315. [Google Scholar] [CrossRef
[16] Mordukhovich, B.S. and Nam, N.M. (2013) An Easy Path to Convex Analysis and Appli- cations. In: Krantz, St.G., Ed., Synthesis Lectures on Mathematics and Statistics, Springer, Cham, 1-218. [Google Scholar] [CrossRef
[17] Weiszfeld, E. (1937) Sur le point pour lequel la somme des distances de n points donn s est minimum. Tohoku Mathematical Journal, First Series, 43, 355-386.
[18] Beck, A. and Sabach, S. (2015) Weiszfeld’s Method: Old and New Results. Journal of Opti- mization Theory and Applications, 164, 1-40. [Google Scholar] [CrossRef