调节性T细胞作为抗癌治疗的潜在靶点
Regulatory T Cells as Potential Therapeutic Targets for Anticancer Therapy
DOI: 10.12677/ACM.2022.12101340, PDF, HTML, XML, 下载: 396  浏览: 563 
作者: 殷方田, 姜 军*:青海大学附属医院,青海 西宁
关键词: 调节性T细胞免疫治疗肿瘤微环境Regulatory T Cells Immunotherapy Tumor Microenvironment
摘要: 免疫逃避是大多数人类恶性肿瘤的特征,并通过各种机制诱导。免疫抑制细胞,包括调节性T细胞(Regulatory T cells, Tregs)和髓源性抑制细胞(myeloid-derived suppressor cell, MDSCs),是帮助肿瘤逃避免疫监视的关键介质。此篇综述讨论了Treg在癌症进展中的作用、当前靶向Treg的治疗策略以及临床应用前景。
Abstract: Immune evasion characterizes most human malignancies and is induced by various mechanisms. Immunosuppressor cells, including Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), are key mediators that help tumors evade immune surveillance. This review discusses the role of Tregs in cancer progression, current Treg-targeting therapeutic strategies, and clinical pro-spects.
文章引用:殷方田, 姜军. 调节性T细胞作为抗癌治疗的潜在靶点[J]. 临床医学进展, 2022, 12(10): 9267-9272. https://doi.org/10.12677/ACM.2022.12101340

1. Treg功能及分型

调节性T细胞(Tregs)是CD4+T细胞的免疫抑制亚群,具有强大的抑制活性和限制免疫激活和维持体内平衡的功能。Tregs可以被招募并持续存在于肿瘤微环境(tumor microenvironment, TME)中,作为有效抗肿瘤免疫的强大屏障 [1] [2]。此外,Treg细胞还直接和间接地促进肿瘤血管生成,以确保氧气和营养物质输送到肿瘤。目前Treg细胞的高浸润对癌症患者的预后的影响仍然存在争议;大家普遍认为肿瘤中浸润的Treg数量增加与不良预后相关。而在某些情况下,例如,在结肠直肠癌(Colorectal Cancer, CRC)患者中 [3],一些患者FOXP3+T细胞高浸润浸润往往预示着更好的预后。这是因为目前对于Treg细胞的定义没有一个统一的说法,或者使用FOXP3作为Treg细胞的唯一标记。

根据CD4+FOXP3+T细胞的作用目前可分为三个亚群 [4] [5] [6]:1) CD45RA+FOXP3loCD25lo原始Treg细胞(nTreg);2) CD45RA-FOXP3hiCD25hi效应Treg细胞(eTreg);3) CD45RA-FOXP3loCD25lo非Treg细胞(non-Treg)。其中,eTreg在肿瘤中丰富存在且具有高度抑制功能,而在TME中几乎检测不到nTreg和non-Treg细胞 [6],这表明eTreg才是造成癌症患者不良预后的罪魁祸首 [7]。另外研究者已经发现CRC患者存在两种Treg细胞亚群的浸润,其中有一部分是属于FOXP3+non-Treg细胞浸润,那么这部分结肠癌患者就会有较好预后 [3],而如果是有抑制能力的eTreg亚群大量浸润结直肠癌,则会导致预后不良。

2. Treg介导的免疫抑制机制

在肿瘤免疫中,Tregs会损害健康个体对癌症的免疫监视,并削弱荷瘤宿主的抗肿瘤免疫反应,加速了肿瘤细胞的免疫逃逸,从而导致各种癌症的肿瘤发展和进展。Tregs表面上表达的许多分子对于引发针对肿瘤的免疫反应至关重要。

2.1. Treg和抗原提呈细胞(Antigen Presenting Cell, APC)的相互作用

Treg细胞表达的细胞毒性T淋巴细胞抗原4(CTLA-4)与APC上的CD80 (B7-1)或CD86 (B7-2)配体结合,从而将抑制信号传递给效应T细胞(effector T cells, Teff),抑制了Teff的毒性功能和增殖 [8];它还可降低APCs和Teff的活性,并通过Fas/Fas配体、穿孔素和颗粒酶B信号通路可直接杀死这些细胞 [5]。同时,CTLA-4和APC上的CD80/86之间的相互作用促进了吲哚胺2,3-二氧酶(indoleamine 2,3-dioxygenase, IDO)的分泌 [5],这是驱动色氨酸代谢的犬尿氨酸途径中的关键酶,可导致色氨酸减少和犬尿氨酸的积累,抑制T细胞的活化并诱导Tregs的产生 [9]。

2.2. CD39介导的腺苷产生

CD39是一种在Treg细胞表面过表达的外核苷酸酶,有助于三磷酸腺苷(ATP)转化为腺苷。因为Treg细胞对氧化应激比Teff更敏感,所以氧化应激诱导Treg细胞凋亡,而凋亡的Treg细胞释放出大量的ATP [10]。随后,ATP被CD39和CD73代谢为腺苷 [10],腺苷向APC发出负信号从而减弱Teff的活化 [6] [10]。腺苷与树突状细胞(dendritic cell; DC)、Teff和自然杀伤细胞(natural killer cell; NK)上表达的A2A受体(A2AR)或A2B受体(A2BR)结合会导致免疫抑制,从而增加Treg细胞的增殖和免疫抑制能力 [8] [11]。

2.3. IL-2消耗

白细胞介素2受体亚基-α (CD25)在Treg上组成型表达,它以更高的亲和力与IL-2结合,导致周围环境中IL-2耗尽,从而限制了Teff的增殖及活化 [12] [13]。总之,Tregs诱导的免疫抑制可由Treg细胞表面表达的受体或酶介导,包括 CTLA-4、CD39和IL-2R。另外,Tregs产生可溶性抑制分子TGF-β、IL-10和IL-35。而TGF-β可降低Teff的细胞毒功能 [5]。

2.4. 神经纤毛蛋白-1 (Nrp1)神经免疫信号蛋白4A (Sema4a)轴和转录因子

Nrp1-Sema4a轴是肿瘤内Tregs稳定性和抑制功能所需的关键途径,对于维持肿瘤中Tregs的免疫抑制能力至关重要 [14]。有研究表明Sema4A过表达可通过抑制口腔鳞状细胞癌的血管生成、侵袭和迁移来限制肿瘤进展,增加信号通路和靶点 [15];而Nrp1是Sema4A和其他配体的细胞表面受体,所以Nrp1的特异性缺失可阻断Sema4A对Treg细胞扩增和功能的影响 [16]。转录因子Helios是另一个与肿瘤浸润性Tregs稳定性有关的靶标。在晚期胃癌中,Helios表达可以是独立的预后因素 [17]。Tregs中的Helios缺陷显示选择性地促进肿瘤内Tregs转化为TME内的Teff,从而导致体内抗肿瘤免疫反应增强 [18] [19]。进一步阐明肿瘤内Treg特异性抑制机制将有助于指导治疗方法以更高的特异性靶向癌症中的Tregs。

3. 靶向Treg策略

TME中大量Treg细胞的存在和CD8+T细胞与Treg细胞的低比例与预后不良相关,这表明Treg细胞抑制肿瘤抗原特异性T细胞反应 [20]。因此,Treg细胞的消耗或者对Treg细胞功能的控制可能是有希望的措施。虽然没有开发出专门针对Treg的药物,但有几种潜在的治疗方法直接或间接控制Treg细胞的抑制。

3.1. 靶向CD25和CTLA-4

已知Treg高表达CD25,那么针对CD25的抗体作为Treg耗竭的一种手段也是很好的方法。具有相同特征的抗人CD25 (RG6292)抗体的临床前评估证明了有效的Tregs消耗,而没有显着的免疫相关毒性 [21]。Fc优化的抗CD25抗体有效地消耗了肿瘤浸润性Treg,增加了效应与Treg的比率,并与抗PD-1抗体协同根除肿瘤 [22]。达克珠单抗(Daclizumab)是一种抗CD25抗体,可有效耗尽外周循环中的所有Treg。两种阻断CTLA-4功能的单克隆抗体易普利姆玛(IgG1)和曲美木单抗(IgG2),通过增强Teff介导的免疫反应,在一部分晚期实体恶性肿瘤患者中显示出持久的临床活性。小鼠研究表明,抗CTLA-4单抗还可以通过Fc依赖性机制选择性地消耗瘤内Foxp3+Tregs,增加CD8/Tregs比率并促进肿瘤排斥 [23]。

3.2. 阻断趋化因子和趋化因子受体

阻断趋化因子和趋化因子受体相互作用会减弱Treg细胞在TME中的积累,从而增加抗肿瘤免疫反应。莫加木单抗(mogamulizumab),抗CCR4抗体,在III期MAVORIC研究中,已被证明可以消耗Tregs并可作为晚期蕈样肉芽肿和Sézary综合征的一种有价值的治疗方法 [24]。另外抗CCR8抗体可能发挥特定的抗肿瘤作用 [25],已有关于CCR8的临床前研究表明,靶向小鼠CCR8特异性抗体的单一疗法显著抑制肿瘤生长,可降低肿瘤Treg频率并同时增加CD8+T细胞频率 [25] [26] [27]。

3.3. 针对Treg上的免疫检查点

OX40,GITR,和LAG-3,主要由Treg细胞表达,也可以作为Treg细胞耗竭和功能操作的候选者。抗OX40抗体,Ivuxolimab,在I期试验中,56%的患者实现了疾病控制 [28] 且不良事件少。GITR是一种TNF受体,抗人GITR抗体TRX518可减少循环和瘤内Tregs,并在晚期黑色素瘤患者中表现出明显的临床疗效 [29]。ICOS信号通路赋予Tregs增加的生成、增殖和存活能力 [30]。在急性髓系白血病中 [31],可在其微环境中发现ICOS+Tregs的积累。在临床前研究中,ICOS激动剂单克隆抗体已显示可增强抑制性检查点阻断的作用 [32]。相比之下,拮抗性抗ICOS抗体不仅可以抑制表达ICOS的淋巴肿瘤细胞,还可抑制免疫抑制性Tregs [32]。在I/II期试验中评估了两种激动剂抗体和一种拮抗剂。但其安全性和联合策略尚未明确。最近的研究表明,LAG-3阻断可以防止Treg招募,可促进DCs在黑色素瘤治疗中的功能 [33]。

ATOR-1015是一种人类CTLA-4和OX40双特异性抗体,可诱导T细胞活化和Treg细胞耗竭,并提高几种同基因肿瘤模型的存活率。预计ATOR-1015与抗PD-1/PD-L1疗法联合使用时会产生协同效应。临床前数据表明,ATOR-1015的进一步临床应用和首次人体试验已经启动(NCT03782467) [34]。

3.4. TGF-β受体激酶抑制剂

目前也有针对Treg衍生的细胞因子的策略,即TGF-β。TGF-β信号传导通过促进转移、刺激血管生成和提高免疫力来推动肿瘤的发展。促进转移,刺激血管生成。并抑制先天性和适应性抗肿瘤免疫力 [35],且通过有助于T细胞排除 [36] 来减弱对PD-L1抑制的治疗反应。因此,TGF-β信号抑制和ICI的组合在几种实体瘤中显示出前景 [37] [38] [39] [40]。

3.5. 其他特异性的策略

目前也有很多新型的特异靶向Tregs的方法,如tDCs相关疗法 [41]、FoxP3相关方法 [42] (TCR模拟抗体和下一代反义寡核苷酸FoxP3抑制剂)、近红外光免疫疗法 [43] (NIR-PIT),多特异性抗体疗法 [44] 以及转录组学和基于计算的筛选以识别优先的Treg细胞靶标 [45] [46] 等。

4. 小结与展望

治疗耐药性仍然是治疗几种晚期恶性肿瘤的主要挑战。人们普遍认为,宿主免疫反应具有消除肿瘤细胞的潜力,但由于TME中存在免疫抑制因子,其功效可能受到限制。Treg不仅在肿瘤免疫逃避中发挥核心作用,而且由于个体间TME的固有异质性,在不同肿瘤类型中观察到不同程度的Treg浸润。就表型和功能而言,瘤内人类Treg种群的异质性仍然是识别TME中特定Treg靶标的障碍是肿瘤免疫治疗成功的根本障碍。因此,通过了解Treg分化、募集、扩增和免疫抑制的机制,能准确开发消耗Treg亚群的治疗策略,以在不引起严重不良免疫反应的情况下增加抗肿瘤免疫反应。

参考文献

[1] Li, C., Jiang, P., Wei, S., et al. (2020) Regulatory T Cells in Tumor Microenvironment: New Mechanisms, Potential Therapeutic Strategies and Future Prospects. Molecular Cancer, 19, Article No. 116.
https://doi.org/10.1186/s12943-020-01234-1
[2] Hariyanto, A.D., Permata, T.B.M. and Gondhowiardjo, S.A. (2021) Role of CD4+ CD25+ FOXP3+ TReg Cells on Tumor Immunity. Immunological Medicine, 45, 94-107.
[3] Saito, T., Nishikawa, H., Wada, H., et al. (2016) Two FOXP3(+)CD4(+) T Cell Subpopulations Distinctly Control the Prog-nosis of Colorectal Cancers. Nature Medicine, 22, 679-684.
https://doi.org/10.1038/nm.4086
[4] Wing, J.B., Tanaka, A. and Sakaguchi, S. (2019) Human FOXP3(+) Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity, 50, 302-316.
https://doi.org/10.1016/j.immuni.2019.01.020
[5] Ohue, Y. and Nishikawa, H. (2019) Regulatory T(Treg) Cells in Cancer: Can Treg Cells Be a New Therapeutic Target? Cancer Science, 110, 2080-2089.
https://doi.org/10.1111/cas.14069
[6] Kim, J.H., Kim, B.S. and Lee, S.K. (2020) Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Network, 20, e4.
https://doi.org/10.4110/in.2020.20.e4
[7] Ha, D., Tanaka, A., Kibayashi, T., et al. (2019) Differential Control of Human Treg and Effector T Cells in Tumor Immunity by Fc-Engineered Anti-CTLA-4 Antibody. Proceedings of the Na-tional Academy of Sciences of the United States of America, 116, 609-618.
https://doi.org/10.1073/pnas.1812186116
[8] Togashi, Y., Shitara, K. and Nishikawa, H. (2019) Regulatory T Cells in Cancer Immunosuppression-Implications for Anticancer Therapy. Nature Reviews Clinical Oncology, 16, 356-371.
https://doi.org/10.1038/s41571-019-0175-7
[9] Platten, M., Nollen, E.A.A., Röhrig, U.F., et al. (2019) Tryptophan Metabolism as a Common Therapeutic Target in Cancer, Neurodegeneration and Beyond. Nature Reviews Drug Discovery, 18, 379-401.
https://doi.org/10.1038/s41573-019-0016-5
[10] Angelin, A., Gil-De-Gómez, L., Dahiya, S., et al. (2017) Foxp3 Reprograms T Cell Metabolism to Function in Low- Glucose, High-Lactate Environments. Cell Metabolism, 25, 1282-1293.e1287.
https://doi.org/10.1016/j.cmet.2016.12.018
[11] Sek, K., Mølck, C., Stewart, G.D., et al. (2018) Targeting Adeno-sine Receptor Signaling in Cancer Immunotherapy. International Journal of Molecular Sciences, 19, Article No. 3837.
https://doi.org/10.3390/ijms19123837
[12] Tanaka, A. and Sakaguchi, S. (2019) Targeting Treg Cells in Cancer Immunotherapy. European Journal of Immunology, 49, 1140-1146.
https://doi.org/10.1002/eji.201847659
[13] Kochin, V. and Nishikawa, H. (2019) Meddling with Meddlers: Curbing Regulatory T Cells and Augmenting Antitumor Immunity. Nagoya Journal of Medical Science, 81, 1-18.
[14] Xu, J., Li, X., Yuan, Q., et al. (2021) The Semaphorin 4A-Neuropilin 1 Axis Alleviates Kidney Ischemia Reperfusion Injury by Promoting the Stability and Function of Regulatory T Cells. Kidney International, 100, 1268-1281.
https://doi.org/10.1016/j.kint.2021.08.023
[15] Liu, X.Q., Yao, Y., Mu, J.W., et al. (2021) Semaphorin 4A Re-stricts Tumor Progression by Inhibiting Angiogenesis of Oral Squamous Cell Carcinoma Cells. Tissue Cell, 69, Article ID: 101485.
https://doi.org/10.1016/j.tice.2021.101485
[16] Chapoval, S.P., Hritzo, M., Qi, X., et al. (2019) Sem-aphorin 4A Stabilizes Human Regulatory T Cell Phenotype via Plexin B1. ImmunoHorizons, 3, 71-87.
https://doi.org/10.4049/immunohorizons.1800026
[17] Chen, W.M., Liu, J.L., Chuang, H.C., et al. (2020) Helios Expression in Tumor-Infiltrating Lymphocytes Correlates with Overall Survival of Advanced Gastric Cancer Patients. Life (Basel), 10, E189.
https://doi.org/10.3390/life10090189
[18] Lam, A.J., Uday, P., Gillies, J.K., et al. (2022) Helios Is a Marker, Not a Driver, of Human Treg Stability. European Journal of Immunology, 52, 75-84.
https://doi.org/10.1002/eji.202149318
[19] Nakagawa, H., Sido, J.M., Reyes, E.E., et al. (2016) Instability of He-lios-Deficient Tregs Is Associated with Conversion to a T-Effector Phenotype and Enhanced Antitumor Immunity. Pro-ceedings of the National Academy of Sciences of the United States of America, 113, 6248-6253.
https://doi.org/10.1073/pnas.1604765113
[20] Ahmadzadeh, M., Pasetto, A., Jia, L., et al. (2019) Tu-mor-Infiltrating Human CD4(+) Regulatory T Cells Display a Distinct TCR Repertoire and Exhibit Tumor and Neoanti-gen Reactivity. Science Immunology, 4, eaao4310.
https://doi.org/10.1126/sciimmunol.aao4310
[21] Solomon, I., Amann, M., Goubier, A., et al. (2020) CD25-T(reg)-Depleting Antibodies Preserving IL-2 Signaling on Effector T Cells Enhance Effector Activation and Anti-tumor Immunity. Nature Cancer, 1, 1153-1166.
https://doi.org/10.1038/s43018-020-00133-0
[22] Vazquez-Lombardi, R., Loetsch, C., Zinkl, D., et al. (2017) Po-tent Antitumour Activity of Interleukin-2-Fc Fusion Proteins Requires Fc-Mediated Depletion of Regulatory T-Cells. Nature Communications, 8, Article No. 15373.
https://doi.org/10.1038/ncomms15373
[23] Sharma, A., Subudhi, S.K., Blando, J., et al. (2019) Anti-CTLA-4 Immunotherapy does Not Deplete FOXP3(+) Regulatory T Cells (Tregs) in Human Cancers. Clinical Cancer Research, 25, 1233-1238.
https://doi.org/10.1158/1078-0432.CCR-18-0762
[24] Lewis, D.J. and Rook, A.H. (2020) Mogamulizumab in the Treatment of Advanced Mycosis Fungoides and Sézary Syndrome: Safety and Efficacy. Expert Review of Anticancer Therapy, 20, 447-452.
https://doi.org/10.1080/14737140.2020.1760096
[25] Moser, B. (2022) Chemokine Receptor-Targeted Therapies: Special Case for CCR8. Cancers, 14, Article No. 511.
https://doi.org/10.3390/cancers14030511
[26] Campbell, J.R., Mcdonald, B.R., Mesko, P.B., et al. (2021) Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T Cells in Human Tumor Models. Cancer Research, 81, 2983-2994.
https://doi.org/10.1158/0008-5472.CAN-20-3585
[27] Whiteside, S.K., Grant, F.M., Gyori, D.S., et al. (2021) CCR8 Marks Highly Suppressive Treg Cells within Tumours but Is Dispensable for Their Accumulation and Suppressive Function. Immunology, 163, 512-520.
https://doi.org/10.1111/imm.13337
[28] Diab, A., Hamid, O., Thompson, J.A., et al. (2022) A Phase I, Open-Label, Dose-Escalation Study of the OX40 Agonist Ivuxolimab in Patients with Locally Advanced or Metastatic Cancers. Clin-ical Cancer Research, 28, 71-83.
https://doi.org/10.1158/1078-0432.CCR-21-0845
[29] Zappasodi, R., Sirard, C., Li, Y., et al. (2019) Rational De-sign of Anti-GITR-Based Combination Immunotherapy. Nature Medicine, 25, 759-766.
https://doi.org/10.1038/s41591-019-0420-8
[30] Li, D.Y. and Xiong, X.Z. (2020) ICOS(+) Tregs: A Functional Subset of Tregs in Immune Diseases. Frontiers in Immunology, 11, Article No. 2104.
https://doi.org/10.3389/fimmu.2020.02104
[31] Han, Y., Dong, Y., Yang, Q., et al. (2018) Acute Myeloid Leuke-mia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells. Frontiers in Immunology, 9, Article No. 2227.
https://doi.org/10.3389/fimmu.2018.02227
[32] Amatore, F., Gorvel, L. and Olive, D. (2018) Inducible Co-Stimulator (ICOS) as a Potential Therapeutic Target for Anti-Cancer Therapy. Expert Opinion on Therapeutic Tar-gets, 22, 343-351.
https://doi.org/10.1080/14728222.2018.1444753
[33] Khair, D.O., Bax, H.J., Mele, S., et al. (2019) Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Frontiers in Immunology, 10, Article No. 453.
https://doi.org/10.3389/fimmu.2019.00453
[34] Kvarnhammar, A.M., Veitonmäki, N., Hägerbrand, K., et al. (2019) The CTLA-4 x OX40 Bispecific Antibody ATOR-1015 Induces Anti-Tumor Effects through Tumor-Directed Immune Activation. Journal for ImmunoTherapy of Cancer, 7, Article No. 103.
https://doi.org/10.1186/s40425-019-0570-8
[35] Tauriello, D.V.F., Palomo-Ponce, S., Stork, D., et al. (2018) TGFβ Drives Immune Evasion in Genetically Reconstituted Colon Cancer Metastasis. Nature, 554, 538-543.
https://doi.org/10.1038/nature25492
[36] Mariathasan, S., Turley, S.J., Nickles, D., et al. (2018) TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature, 554, 544-548.
https://doi.org/10.1038/nature25501
[37] Holmgaard, R.B., Schaer, D.A., Li, Y., et al. (2018) Targeting the TGFβ Pathway with Galunisertib, a TGFβRI Small Molecule Inhibitor, Promotes Anti-Tumor Immunity Leading to Durable, Complete Responses, as Monotherapy and in Combination with Checkpoint Blockade. Journal for ImmunoTherapy of Cancer, 6, Article No. 47.
[38] Principe, D.R., Narbutis, M., Kumar, S., et al. (2020) Long-Term Gemcitabine Treat-ment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunother-apy. Cancer Research, 80, 3101-3115.
https://doi.org/10.1158/0008-5472.CAN-19-2959
[39] Principe, D.R., Park, A., Dorman, M.J., et al. (2019) TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell- Mediated Regression of Pancreatic Cancer. Molecular Cancer Therapeutics, 18, 613-620.
https://doi.org/10.1158/1535-7163.MCT-18-0850
[40] Chen, X., Wang, L., Li, P., et al. (2018) Dual TGF-β and PD-1 Blockade Synergistically Enhances MAGE-A3-Specific CD8(+) T Cell Response in Esophageal Squamous Cell Carcinoma. International Journal of Cancer, 143, 2561-2574.
https://doi.org/10.1002/ijc.31730
[41] Boudewijns, S., Bloemendal, M., De Haas, N., et al. (2020) Autologous Monocyte-Derived DC Vaccination Combined with Cisplatin in Stage III and IV Melanoma Patients: a Prospective, Randomized Phase 2 Trial. Cancer Immunology, Immunotherapy, 69, 477-488.
https://doi.org/10.1007/s00262-019-02466-x
[42] Dao, T., Mun, S.S., Scott, A.C., et al. (2019) Depleting T Regu-latory Cells by Targeting Intracellular Foxp3 with a TCR Mimic Antibody. Oncoimmunology, 8, Article ID: 1570778.
https://doi.org/10.1080/2162402X.2019.1570778
[43] Okada, R., Maruoka, Y., Furusawa, A., et al. (2019) The Effect of Antibody Fragments on CD25 Targeted Regulatory T Cell Near-Infrared Photoimmunotherapy. Bioconjugate Chemistry, 30, 2624-2633.
https://doi.org/10.1021/acs.bioconjchem.9b00547
[44] Deshaies, R.J. (2020) Multispecific Drugs Herald a New Era of Biopharmaceutical Innovation. Nature, 580, 329-338.
https://doi.org/10.1038/s41586-020-2168-1
[45] Freeman, Z.T., Nirschl, T.R., Hovelson, D.H., et al. (2020) A Conserved Intratumoral Regulatory T Cell Signature Identifies 4-1BB as a Pan-Cancer Target. The Journal of Clinical Investigation, 130, 1405-1416.
https://doi.org/10.1172/JCI128672
[46] Cari, L., Nocentini, G., Migliorati, G., et al. (2018) Potential Effect of Tu-mor-Specific Treg-Targeted Antibodies in the Treatment of Human Cancers: A Bioinformatics Analysis. Oncoimmunol-ogy, 7, e1387705.
https://doi.org/10.1080/2162402X.2017.1387705