学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 12 No. 10 (October 2022)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
具有分数阶线性记忆的非经典反应扩散方程解的渐近性
The Asymptotic Behavior of Solutions for a Class of NonclassicalReaction-Diffusion Equations withFractional Linear Memory
DOI:
10.12677/PM.2022.1210175
,
PDF
,
HTML
,
,
被引量
作者:
马文慧
,
张 盈
:西北师范大学数学与统计学院,甘肃 兰州
关键词:
非经典反应扩散方程
;
分数阶线性记忆
;
多项式衰减
;
Non-Classical Reaction Diffusion Equations
;
Fractional Linear Memory
;
Polynomially Decay
摘要:
研究了一类具有分数阶线性记忆的非经典反应扩散方程解的渐近性行为. 定义合适的 Lyapunov 泛函, 证明了当非线性项f满足增长性条件, 记忆核g呈指数衰减时,系统的解是多项式衰减的; 随后, 应用半群理论, 证明了解是非指数稳定的.
Abstract:
The asymptotic behavior of solutions for a class of nonclassical reaction-diffusion e-quations with fractional linear memory is investigated. by defining an appropriate Lyapunov functional, it is proved that the solution of the system decays polynomially when the nonlinear term f satisfies the growth condition and the memory kernel g decays exponentially. After that, we achieve that the solution is non-exponentially stable by means of the semigroup theory.
文章引用:
马文慧, 张盈. 具有分数阶线性记忆的非经典反应扩散方程解的渐近性[J]. 理论数学, 2022, 12(10): 1615-1628.
https://doi.org/10.12677/PM.2022.1210175
参考文献
[1]
Aifantis, E.C. (1980) On the Problem of Diffusion in Solids. Acta Mechanica, 37, 265-296.
https://doi.org/10.1007/BF01202949
[2]
Aifantis, E.C. (2011) Gradient Nanomechanics: Applications to Deformation, Fracture, and Diffusion in Nanopolycrystals. Metallurgical and Materials Transactions A, 42, 2985-2998.
https://doi.org/10.1007/s11661-011-0725-9
[3]
Wang, X., Yang, L. and Zhong, C.K. (2010) Attractors for the Nonclassical Diffusion Equations with Fading Memory. Journal of Mathematical Analysis and Applications, 362, 327-337.
https://doi.org/10.1016/j.jmaa.2009.09.029
[4]
Wang, X. and Zhong, C.K. (2009) Attractors for the Non-Autonomous Nonclassical Diffusion Equations with Fading Memory. Nonlinear Analysis: Theory, Methods Applications, 71, 5733- 5746.
https://doi.org/10.1016/j.na.2009.05.001
[5]
Jaime, E., Munoz, R. and Maria, G.N. (2003) Asymptotic Behavior of Energy for a Class of Weakly Dissipative Second-Order Systems with Memory. Journal of Mathematical Analysis and Applications, 286, 692-704.
https://doi.org/10.1016/S0022-247X(03)00511-0
[6]
Al-Gharabli, M.M. (2019) Arbitrary Decay Result of a Viscoelastic Equation with Infinite Memory and Nonlinear Frictional Damping. Boundary Value Problems, 2019, Article No. 140.
https://doi.org/10.1186/s13661-019-1253-6
[7]
Cavalcanti, M.M. and Oquendo, H.P. (2003) Frictional versus Viscoelastic Damping in a Semi- linear Wave Equation. SIAM Journal on Control and Optimization, 42, 1310-1324.
https://doi.org/10.1137/S0363012902408010
[8]
Pruss, J. (1984) On the Spectrum of C0-Semigroups. Transactions of the American Mathemat- ical Society, 284, 847-857.
https://doi.org/10.2307/1999112
投稿
为你推荐
友情链接
科研出版社
开放图书馆