|
[1]
|
Saunders, D.H., Sanderson, M., Hayes, S., et al. (2020) Physical Fitness Training for Patients with Stroke. Stroke, 51, e299-e300. [Google Scholar] [CrossRef]
|
|
[2]
|
Ma, Y., Nie, H., Chen, H., et al. (2015) NAD⁺/NADH Metabolism and NAD⁺-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications. Current Medicinal Chemistry, 22, 1239-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lu, Y.Y., Li, Z.Z., Jiang, D.S., et al. (2013) TRAF1 Is a Critical Regulator of Cerebral Ischaemia-Reperfusion Injury and Neuronal Death. Nature Communications, 4, Article No. 2852. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pires Monteiro, S., Voogd, E., Muzzi, L., et al. (2021) Neu-roprotective Effect of Hypoxic Preconditioning and Neuronal Activation in a in Vitro Human Model of the Ischemic Pe-numbra. Journal of Neural Engineering, 18, Article ID: 036016. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Prentice, H., Gharibani, P.M., Ma, Z., et al. (2017) Neuroprotective Functions through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model. Ad-vances in Experimental Medicine and Biology, 975, 193-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ridder, D.A. and Schwaninger, M. (2009) NF-kappaB Sig-naling in Cerebral Ischemia. Neuroscience, 158, 995-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Harari, O.A. and Liao, J.K. (2010) NF-κB and Innate Im-munity in Ischemic Stroke. Annals of the New York Academy of Sciences, 1207, 32-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Burkewitz, K., Dutta, S., Kelley, C.A., et al. (2020) Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Reports, 32, Article ID: 108125. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ogata, S., Kameda, K., Kono, T., et al. (2019) Expressions of ATF6, XBP1, and GRP78 in Normal Tissue, Atypical Adenomatous Hyperplasia, and Adenocarcinoma of the Lung. Human Pathology, 83, 22-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pandey, S.K., Yadav, S., Temre, M.K., et al. (2018) Tracking Acetate through a Journey of Living World: Evolution as Alternative Cellular Fuel with Potential for Application in Can-cer Therapeutics. Life Sciences, 215, 86-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Blagosklonny, M.V., An, W.G., Romanova, L.Y., et al. (1998) p53 Inhibits Hypoxia-Inducible Factor-Stimulated Transcription. The Journal of Biological Chemistry, 273, 11995-11998. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Markus, H.S., Brainin, M. and Fisher, M. (2020) Tracking the Global Burden of Stoke and Dementia: World Stroke Day 2020. International Journal of Stroke, 15, 817-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Vosler, P.S. and Chen, J. (2009) Potential Molecular Targets for Translational Stroke Research. Stroke, 40, S119-S120. [Google Scholar] [CrossRef]
|
|
[14]
|
Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., et al. (2014) Global and Regional Burden of Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet (London, England), 383, 245-254. [Google Scholar] [CrossRef]
|
|
[15]
|
Yang, S.H. and Liu, R. (2021) Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Translational Stroke Research, 12, 937-945. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Uzdensky, A.B. (2020) Regulation of Apoptosis in the Ischemic Penumbra in the First Day Post-Stroke. Neural Regeneration Research, 15, 253-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gupta, S., Biswas, J., Gupta, P., et al. (2019) Salubrinal Attenuates Nitric Oxide Mediated PERK:IRE1α: ATF-6 Signaling and DNA Damage in Neuronal Cells. Neurochemistry Interna-tional, 131, Article ID: 104581. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wu, F., Qiu, J., Fan, Y., et al. (2018) Apelin-13 Attenuates ER Stress-Mediated Neuronal Apoptosis by Activating Gα(i)/Gα(q)-CK2 Signaling in Ischemic Stroke. Experimental Neu-rology, 302, 136-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jin, W.Y., Lin, S.L., Hou, R.L., et al. (2016) Associations between Maternal Lipid Profile and Pregnancy Complications and Perinatal Outcomes: A Population-Based Study from China. BMC Pregnancy and Childbirth, 16, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fu, J., Peng, L., Wang, W., et al. (2019) Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochemical Research, 44, 2517-2526. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Almanza, A., Carlesso, A., Chintha, C., et al. (2019) Endoplas-mic Reticulum Stress Signalling—From Basic Mechanisms to Clinical Applications. The FEBS Journal, 286, 241-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kong, F.J., Ma, L.L., Guo, J.J., et al. (2018) Endoplasmic Reticulum Stress/Autophagy Pathway Is Involved in Diabetes-Induced Neuronal Apoptosis and Cognitive Decline in Mice. Clinical Science (London, England: 1979), 132, 111-125. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, H.-C., Piao, M., Guo, M., et al. (2020) MicroRNA-211-5p Attenuates Spinal Cord Injury via Targeting of Activating Transcription Factor 6. Tissue and Cell, 68, Article ID: 101459. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, X., Zhang, X., Xing, R., et al. (2021) Syringic Acid Demonstrates Promising Protective Effect against Tau Fibrillization and Cytotoxicity through Regulation of Endoplasmic Reticulum Stress-Mediated Pathway as a Prelude to Alzheimer’s Disease. Interna-tional Journal of Biological Macromolecules, 192, 491-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Reisenauer, C.J., Bhatt, D.P., Mitteness, D.J., et al. (2011) Ac-etate Supplementation Attenuates Lipopolysaccharide- Induced Neuroinflammation. Journal of Neurochemistry, 117, 264-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Huang, W., Hu, W., Cai, L., et al. (2021) Acetate Supple-mentation Produces Antidepressant-Like Effect via Enhanced Histone Acetylation. Journal of Affective Disorders, 281, 51-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pandey, S.K., Yadav, S., Goel, Y., et al. (2019) Cytotoxic Action of Acetate on Tumor Cells of Thymic Origin: Role of MCT-1, pH Homeostasis and Altered Cell Survival Regula-tion. Biochimie, 157, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Suzuki, H., Tomida, A. and Tsuruo, T. (2001) Dephosphorylated Hypoxia-Inducible Factor 1alpha as a Mediator of p53-Dependent Apoptosis during Hypoxia. Oncogene, 20, 5779-5788. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bose, S., Ramesh, V. and Locasale, J.W. (2019) Acetate Metabolism in Physiology, Cancer, and Beyond. Trends in Cell Biology, 29, 695-703. [Google Scholar] [CrossRef] [PubMed]
|