运用红外线分析构建磷灰石超分子模型——磷灰石超分子模型
Establishing an Apatite Supramolecular Model with Fourier Transform Infrared Spectroscopy Assay——Apatite Supramolecular Model
DOI: 10.12677/hjcet.2012.22003, PDF, HTML, 下载: 3,291  浏览: 10,058 
作者: 吴旻韩*:大同大学;吴旻禧:上海中医药大学;吴长奇, 毛素玫:九之牙医诊所
关键词: 磷灰石氢氧磷灰石氟化氢氧磷灰石超分子模型
Apatite; Hydroxyapatite; Fluoridated Hydroxyapatite; Supramolecular Model
摘要: 氟化氢氧磷灰石被用于提高人牙的抗龋作用。制备方法和含氟比率的优化自然地是烧结作用的关键。在当前研究中,我们依据根据氢氧磷灰石–氟化钙系统的烧结反应分析了氟化氢氧磷灰石分子特征。运用傅立叶变换红外分光谱技术检验磷灰石的分子特征。氟化氢氧磷灰石由不同比例组合的氢氧磷灰石和氟化钙烧结形成。在傅立叶变换红外分光谱分析之下,氟化氢氧磷灰石复合物显示OH F HO和OH F氢键吸收带。当氟化钙内容逐渐增量,光谱分析序列显示首先伸展方式振动的OH F,跟随OH F HO摆动方式振动,终于OH F摆动方式振动。所以,本研究根据烧结理论和傅立叶变换红外分光谱分析建立磷灰石超分子模型为烧结氟化氢氧磷灰石提供分子结构理论基础。
Abstract: The fluoridated hydroxyapatite (FHA) was used to enhance the anti-carious effect of human tooth. Both the treatment method and the optimizing molar ratio were naturally the key of the sintering effect. In current studies, we have investigated the molecular characteristics and the sintering mechanism of sintered FHA composites based on HA-CaF2 system. The molecular characteristics of the FHA composites assayed by Fourier transform infrared spectros- copy (FT-IR) techniques. The FHA composites were prepared by sintering different combinations of HA and CaF2. FHA composites show the OH F HO and/or the OH F hydrogen absorption band under the FT-IR analysis. With grad- ual increase of CaF2 content, the sequence of FT-IR bands show OH F stretching mode vibration first, then followed by OH F HO liberational mode vibration and, finally, the OH F liberational mode vibration. Therefore, according to sintering theory and FT-IR analysis we established an apatite supramolecular model to provide molecular characteris- tic foundation for sintered FHA structure.
文章引用:吴旻韩, 吴旻禧, 吴长奇, 毛素玫. 运用红外线分析构建磷灰石超分子模型——磷灰石超分子模型[J]. 化学工程与技术, 2012, 2(2): 8-13. http://dx.doi.org/10.12677/hjcet.2012.22003

参考文献

[1] J. D. Featherstone. Prevention and reversal of dental caries: Role of low level fluoride. Community Dentistry and Oral Epidemi- ology, 1999, 27(1): 31-40.
[2] T. Aoba. The effect of fluoride on apatite structure and growth. Critical Reviews in Oral Biology & Medicine, 1997, 8(2): 136- 153.
[3] K. Cheng, S. Zhang and W. J. Weng. Sol-gel preparation of fluoridated hydroxyapatite in Ca(NO3)2-PO(OH)3-x(OEt)x-HPF6 System. Journal of Sol-Gel Science and Technology, 2006, 38(1): 13-17.
[4] F. B. Ayed, J. Bouaziz and K. Bouzouita. Pressureless sintering of fluorapatite under oxygen atmos-phere. Journal of European Ceramic Society, 2000, 20(8): 1069-1076.
[5] F. B. Ayed, J. Bouaziz and K. Bouzouita. Calcination and sinter- ing of fluorapatite under argon atmosphere. Journal of Al-loys and Compounds, 2001, 322(1-2): 238-245.
[6] Y. M. Chen, X. G. Miao. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials, 2005, 26(11): 1205-1210.
[7] C. C. Wu, R. T. Roan and J. H. Chen. Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-μm CO2 Laser. Lasers in Surgery and Medicine, 2002, 31(5): 333-338.
[8] C. C. Wu, S. T. Huang, T. W. Tseng, Q. L. Rao and H. C. Lin. FT-IR and XRD investigations on sintered fluoridated hydroxya- patite composites. Journal of Molecular Structure, 2010, 979 (1-3): 72-76.
[9] C. C. Wu, S. T. Huang, T. W. Tseng, Q. L. Rao, H. C. Lin and M. U. Chen. Ex-pression of osteopontin and type I collagen of hFOB 1.19 cells on sintered fluoridated hydroxyapatite composite bone graft materials. Implant Dentistry, 2010, 19(6): 487-497.
[10] J. M. Lehn. Su-pramolecular chemistry-scope and perspectives molecules, supermo-lecules, and molecular devices. Angewandte Chemie International Edition, 1988, 27(1): 89-112.
[11] J. C. Elliott. Structure and chemis-try of the apatites and other calcium orthophosphates. Amsterdam: Elsevier, 1994.
[12] F. Freund, R. M. Knobel. Distribution of fluorine in hydroxya- patite studied by infrared spectroscopy. Journal of Chemical So- ciety, 1977, 6(11): 1136-1140.
[13] G. Penel, G. Leroy, C. Rey, B. Sombret, J. P. Huvenne and E. Bres. Infrared and Raman microspectrometry study of fluor- fluor-hydroxy and hydroxy-apatite powders. Journal of Materi- als Science: Materials in Medicine, 1997, 8(5): 271-276.