甲烷气氛下褐煤热解动力学研究
Thermal Pyrolysis Kinetics of Lignitic Coal in Methane Atmosphere
DOI: 10.12677/hjcet.2012.22007, PDF, HTML, 下载: 3,339  浏览: 10,221 
作者: 蔡俊青*:河南科技大学化工与制药学院;乔金枝*:河南煤化焦煤基团冯营电力有限责任公司
关键词: 褐煤甲烷热解动力学
Lignitic Coal; Methane; Pyrolysis; Kinetic
摘要: 以龙口褐煤为原料,在甲烷气氛下分别进行25℃,40℃,55℃,70℃•min–1四个加热速率下的热重分析(TGA),发现在热解反应过程中甲烷和煤之间具有协同效应。根据热重数据关联了系列不同挥发度下煤的活化能和指前因子等动力学参数。活化能和指前因子随挥发度的变化而变化,指前因子的对数与活化能之间有很好的直线关系,显示出良好的补偿效应,说明龙口褐煤热解反应由许多不同动力学参数的平行反应组成。用活化能分布模型计算了活化能和指前因子的分布函数,该模型能较好的表达褐煤在甲烷气氛下的热解特性。
Abstract: Thermogravimetric analysis (TGA) was carried out for Longkou lignitic coal with four different heating rate of 25˚C, 40˚C, 55˚C and 70˚C•min–1. The experimental results indicated a synergistic effect during methane and coal. The kinetic parameters, activation energies (E) and pre-exponential factors , of thermal pyrolysis for coal at dif- ferent conversion levels were correlated from the thermogavimetric data. The conversion dependent E and k0 values were obtained. The compensation effect is clearly observed from the straight line of the plot of versus E. It indicated that many parallel reaction with different rate parameters occur simultaneously during the pyrolysis of coal. The distribution functions, and , were then established satisfactorily by the distributed activation energy model (DAEM).
文章引用:蔡俊青, 乔金枝. 甲烷气氛下褐煤热解动力学研究[J]. 化学工程与技术, 2012, 2(2): 37-41. http://dx.doi.org/10.12677/hjcet.2012.22007

参考文献

[1] 李俊岭, 赵月红, 温浩等. 天然气和煤联合制备廉价合成气新工艺及其热力学分析[J]. 计算机应用化学, 2002, 19(4): 381- 384.
[2] N. O. Egiebor, M. R. Gray. Evidence for methane reactivity during coal pyrolysis and liquefaction. Fuel, 1990, 69(10): 1276- 1282.
[3] 高梅杉, 张建民, 罗鸣等. 褐煤在甲烷气氛下热解特性及硫析出规律研究[J]. 煤炭转化, 2005, 28(4): 7-10.
[4] C. Yue, A. P. Watkinson. Pyrolysis of pitch. Fuel, 1998, 77(7): 695-711.
[5] 胡荣祖, 史启桢. 热分析动力学[M]. 北京: 科学出版社, 2001: 108-111.
[6] 张伟南, 袁誉洪, 李丽清等. 二水草酸锌脱水的热分解动力学研究[J]. 物理化学学报, 2004, 20(1): 33-37.
[7] X. Gao, D. Pollimore. A kinetic study of the thermal decompo- sition of magnese (II) oxalate dihydro-nate. Thermochimica Acta, 1993, 215: 47-63.
[8] R. L. Braun, A. K. Burnham, J. G. Reynolds, et al. Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy & Fuels, 1991, 5(1): 192-204.
[9] C. C. Lakshmanan, M. L. Bennett and N. White. Implications of multiplicity in kinetic parameters to petroleum exploration: Dis- tributed activation energy models. Energy & Fuels, 1991, 5(1): 110-117.
[10] K. Miura. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels, 1995, 9(2): 302-307.
[11] T. Maki, A. Takatsuno and K. Miura. Analysis of pyro-lysis reac- tions of various coals including argonne premium coals using a new distributed activation energy model. Energy & Fuels, 1997, 11(5): 972-977.
[12] K. Miura, T. Maki. A simple method for estimat-ing f(E) and k0(E) in the distributed activation energy model. Energy & Fuels, 1998, 12(5): 864-869.
[13] 董喜贵, 雷群芳, 俞庆森. 石油沥青质的热解动力学研究[J]. 浙江大学学报(理学版), 2004, 31(6): 652-656.