[1]
|
Khoshnam, S.E., Winlow, W., Farzaneh, M., et al. (2017) Pathogenic Mechanisms Following Ischemic Stroke. Neuro-logical Sciences, 38, 1167-1186. https://doi.org/10.1007/s10072-017-2938-1
|
[2]
|
Bayraktar, E., et al. (2017) Exo-somes: From Garbage Bins to Promising Therapeutic Targets. International Journal of Molecular Sciences, 18, Article No. 538. https://doi.org/10.3390/ijms18030538
|
[3]
|
Liu, W., Li, L., Rong, Y., et al. (2020) Hypoxic Mesenchymal Stem Cell-Derived Exosomes Promote Bone Fracture Healing by the Transfer of miR-126. Acta Biomaterialia, 103, 196-212. https://doi.org/10.1016/j.actbio.2019.12.020
|
[4]
|
Reilly, P., Winston, C.N., Baron, K.R., et al. (2017) Novel Human Neuronal Tau Model Exhibiting Neurofibrillary Tangles and Transcellular Propagation. Neurobiology of Disease, 106, 222-234.
https://doi.org/10.1016/j.nbd.2017.06.005
|
[5]
|
Zhang, H., Wang, L., Li, C., et al. (2019) Exosome-Induced Regu-lation in Inflammatory Bowel Disease. Frontiers in Immunology, 10, Article No. 1464. https://doi.org/10.3389/fimmu.2019.01464
|
[6]
|
Wu, P., Zhang, B., Shi, H., et al. (2018) MSC-Exosome: A Novel Cell-Free Therapy for Cutaneous Regeneration. Cytotherapy, 20, 291-301. https://doi.org/10.1016/j.jcyt.2017.11.002
|
[7]
|
Pan, B.T. and Johnstone, R.M. (1983) Fate of the Transferrin Re-ceptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell, 33, 967-978. https://doi.org/10.1016/0092-8674(83)90040-5
|
[8]
|
Kalluri, R. and Lebleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[9]
|
Zhang, J., Li, S., Li, L., et al. (2015) Exosome and Exosomal mi-croRNA: Trafficking, Sorting, and Function. Genomics Proteomics Bioinformatics, 13, 17-24. https://doi.org/10.1016/j.gpb.2015.02.001
|
[10]
|
Zhang, Y., Bi, J., Huang, J., et al. (2020) Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. International Journal of Nanomedicine, 15, 6917-6934.
https://doi.org/10.2147/IJN.S264498
|
[11]
|
He, C., Zheng, S., Luo, Y., et al. (2018) Exosome Theranostics: Biology and Translational Medicine. Theranostics, 8, 237-255. https://doi.org/10.7150/thno.21945
|
[12]
|
Yang, D., Zhang, W., Zhang, H., et al. (2020) Progress, Opportunity, and Perspective on Exosome Isolation—Efforts for Efficient Exo-some-Based Theranostics. Theranostics, 10, 3684-3707. https://doi.org/10.7150/thno.41580
|
[13]
|
Li, P., Kaslan, M., Lee, S.H., et al. (2017) Progress in Exosome Isolation Techniques. Theranostics, 7, 789-804.
https://doi.org/10.7150/thno.18133
|
[14]
|
Jeppesen, D.K., Hvam, M.L., Primdahl-Bengtson, B., et al. (2014) Com-parative Analysis of Discrete Exosome Fractions Obtained by Differential Centrifugation. Journal of Extracellular Vesi-cles, 3, Article No. 25011.
https://doi.org/10.3402/jev.v3.25011
|
[15]
|
Gupta, S., Rawat, S., Arora, V., et al. (2018) An Improvised One-Step Sucrose Cushion Ultracentrifugation Method for Exosome Isolation from Culture Supernatants of Mesenchymal Stem Cells. Stem Cell Research & Therapy, 9, Article No. 180. https://doi.org/10.1186/s13287-018-0923-0
|
[16]
|
Wan, T., Huang, Y., Gao, X., et al. (2022) Microglia Polarization: A Novel Target of Exosome for Stroke Treatment. Frontiers in Cell and Developmental Biology, 10, Article ID: 842320. https://doi.org/10.3389/fcell.2022.842320
|
[17]
|
Shu, Z.M., Shu, X.D., Li, H.Q., et al. (2016) Ginkgolide B Protects against Ischemic Stroke via Modulating Microglia Polarization in Mice. CNS Neuroscience & Therapeutics, 22, 729-739. https://doi.org/10.1111/cns.12577
|
[18]
|
Liu, X., Zhang, M., Liu, H., et al. (2021) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate Cerebral Ische-mia-Reperfusion Injury-Induced Neuroinflammation and Pyroptosis by Modulating Microglia M1/M2 Phenotypes. Ex-perimental Neurology, 341, Article ID: 113700. https://doi.org/10.1016/j.expneurol.2021.113700
|
[19]
|
Zhao, Y., Gan, Y., Xu, G., Yin, G., et al. (2020) MSCs-Derived Exosomes Attenuate Acute Brain Injury and Inhibit Microglial In-flammation by Reversing CysLT2R-ERK1/2 Mediated Microglia M1 Polarization. Neurochemical Research, 45, 1180-1190. https://doi.org/10.1007/s11064-020-02998-0
|
[20]
|
Zhao, Y., Gan, Y., Xu, G., et al. (2020) Exosomes from MSCs Overexpressing microRNA-223-3p Attenuate Cerebral Ischemia through Inhibiting Microglial M1 Polariza-tion Mediated Inflammation. Life Sciences, 260, 118403.
https://doi.org/10.1016/j.lfs.2020.118403
|
[21]
|
Deng, Y., Chen, D., Gao, F., et al. (2019) Exosomes Derived from microRNA-138-5p-Overexpressing Bone Marrow-Derived Mesenchymal Stem Cells Confer Neuroprotection to Astro-cytes Following Ischemic Stroke via Inhibition of LCN2. Journal of Biological Engineering, 13, Article No. 71. https://doi.org/10.1186/s13036-019-0193-0
|
[22]
|
Giunti, D., Marini, C., Parodi, B., et al. (2021) Role of miRNAs Shuttled by Mesenchymal Stem Cell-Derived Small Extracellular Vesicles in Modulating Neuroinflammation. Scientific Reports, 11, Article No. 1740.
https://doi.org/10.1038/s41598-021-81039-4
|
[23]
|
Tian, T., Cao, L., He, C., et al. (2021) Targeted Delivery of Neural Progenitor Cell-Derived Extracellular Vesicles for Anti-Inflammation after Cerebral Ischemia. Theranostics, 11, 6507-6521. https://doi.org/10.7150/thno.56367
|
[24]
|
Cai, G., Cai, G., Zhou, H., et al. (2021) Mesenchymal Stem Cell-Derived Exosome miR-542-3p Suppresses Inflammation and Prevents Cerebral Infarction. Stem Cell Research & Therapy, 12, Article No. 2.
https://doi.org/10.1186/s13287-020-02030-w
|
[25]
|
Tuo, Q.Z., Zhang, S.T. and Lei, P. (2022) Mechanisms of Neu-ronal Cell Death in Ischemic Stroke and Their Therapeutic Implications. Medicinal Research Reviews, 42, 259-305. https://doi.org/10.1002/med.21817
|
[26]
|
Chen, W., Wang, H., Zhu, Z., Feng, J., et al. (2020) Exosome-Shuttled circSHOC2 from IPASs Regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Axis. Molecular Therapy—Nucleic Acids, 22, 657-672. https://doi.org/10.1016/j.omtn.2020.09.027
|
[27]
|
Cheng, C., Chen, X., Wang, Y., et al. (2021) MSCs‑Derived Ex-osomes Attenuate Ischemia-Reperfusion Brain Injury and Inhibit Microglia Apoptosis Might via Exosomal miR-26a-5p Mediated Suppression of CDK6. Molecular Medicine, 27, Article No. 67. https://doi.org/10.1186/s10020-021-00324-0
|
[28]
|
Song, Y., Li, Z., He, T., Qu, M., et al. (2019) M2 Micro-glia-Derived Exosomes Protect the Mouse Brain from Ischemia-Reperfusion Injury via Exosomal miR-124. Theranostics, 9, 2910-2923. https://doi.org/10.7150/thno.30879
|
[29]
|
Li, Z., Song, Y., He, T., et al. (2021) M2 Microglial Small Extracellular Vesicles Reduce Glial Scar Formation via the miR-124/STAT3 Pathway after Ischemic Stroke in Mice. Theranostics, 11, 1232-1248.
https://doi.org/10.7150/thno.48761
|
[30]
|
Zhang, D., Cai, G., Liu, K., et al. (2021) Microglia Exosomal miRNA-137 Attenuates Ischemic Brain Injury through Targeting Notch1. Aging (Albany NY), 13, 4079-4095. https://doi.org/10.18632/aging.202373
|
[31]
|
Li, X., Bi, T. and Yang, S. (2022) Exosomal microRNA-150-5p from Bone Marrow Mesenchymal Stromal Cells Mitigates Cerebral Ischemia/Reperfusion Injury via Targeting Toll-Like Re-ceptor 5. Bioengineered, 13, 3030-3043.
https://doi.org/10.1080/21655979.2021.2012402
|
[32]
|
Xin, H., Li, Y., Buller, B., et al. (2012) Exosome-Mediated Transfer of miR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. Stem Cells, 30, 1556-1564.
https://doi.org/10.1002/stem.1129
|
[33]
|
Xin, H., Li, Y. and Chopp, M. (2014) Exosomes/miRNAs as Mediating Cell-Based Therapy of Stroke. Frontiers in Cellular Neuroscience, 8, Article No. 377. https://doi.org/10.3389/fncel.2014.00377
|
[34]
|
Hira, K., Ueno, Y., Tanaka, R., et al. (2018) Astrocyte-Derived Ex-osomes Treated with a Semaphorin 3A Inhibitor Enhance Stroke Recovery via Prostaglandin D(2) Synthase. Stroke, 49, 2483-2494.
https://doi.org/10.1161/STROKEAHA.118.021272
|
[35]
|
Zhang, Y., Qin, Y., Chopp, M., et al. (2020) Ischemic Cerebral Endothelial Cell-Derived Exosomes Promote Axonal Growth. Stroke, 51, 3701-3712. https://doi.org/10.1161/STROKEAHA.120.031728
|
[36]
|
Hermann, D.M. and Zechariah, A. (2009) Implications of Vascular Endothelial Growth Factor for Postischemic Neurovascular Remodeling. Journal of Cerebral Blood Flow & Metabolism, 29, 1620-1643.
https://doi.org/10.1038/jcbfm.2009.100
|
[37]
|
Su, S.A., Xie, Y., Fu, Z., et al. (2017) Emerging Role of Exo-some-Mediated Intercellular Communication in Vascular Remodeling. Oncotarget, 8, 25700-25712. https://doi.org/10.18632/oncotarget.14878
|
[38]
|
Xu, B., Zhang, Y., Du, X.F., et al. (2017) Neurons Secrete miR-132-Containing Exosomes to Regulate Brain Vascular Integrity. Cell Research, 27, 882-897. https://doi.org/10.1038/cr.2017.62
|
[39]
|
Zhang, Y., Chopp, M., Meng, Y., et al. (2015) Effect of Exosomes Derived from Multipluripotent Mesenchymal Stromal Cells on Functional Recovery and Neurovascular Plasticity in Rats after Traumatic Brain Injury. Journal of Neurosurgery, 122, 856-867. https://doi.org/10.3171/2014.11.JNS14770
|
[40]
|
Tian, Y., Zhu, P., Liu, S., et al. (2019) IL-4-Polarized BV2 Mi-croglia Cells Promote Angiogenesis by Secreting Exosomes. Advances in Clinical and Experimental Medicine, 28, 421-430. https://doi.org/10.17219/acem/91826
|
[41]
|
Liu, J., Gu, Y., Guo, M., et al. (2021) Neuroprotective Effects and Mechanisms of Ischemic/Hypoxic Preconditioning on Neurological Diseases. CNS Neuroscience & Therapeutics, 27, 869-882. https://doi.org/10.1111/cns.13642
|
[42]
|
Wegener, S., Gottschalk, B., Jovanovic, V., et al. (2004) Transient Ischemic Attacks before Ischemic Stroke: Preconditioning the Human Brain? A Multicenter Magnetic Resonance Imaging Study. Stroke, 35, 616-621.
https://doi.org/10.1161/01.STR.0000115767.17923.6A
|
[43]
|
Wang, W.W., Chen, D.Z., Zhao, M., et al. (2017) Pri-or Transient Ischemic Attacks May Have a Neuroprotective Effect in Patients with Ischemic Stroke. Archives of Medical Science, 13, 1057-1061.
https://doi.org/10.5114/aoms.2016.63744
|
[44]
|
Li, S., Hafeez, A., Noorulla, F., et al. (2017) Preconditioning in Neuroprotection: From Hypoxia to Ischemia. Progress in Neurobiology, 157, 79-91. https://doi.org/10.1016/j.pneurobio.2017.01.001
|
[45]
|
Li, H., Luo, Y., Liu, P., et al. (2021) Exosomes Containing miR-451a Is Involved in the Protective Effect of Cerebral Ischemic Preconditioning against Cerebral Ischemia and Reperfusion Injury. CNS Neuroscience & Therapeutics, 27, 564-576. https://doi.org/10.1111/cns.13612
|
[46]
|
Tian, T., Zhang, H.X., He, C.P., et al. (2018) Surface Functionalized Exosomes as Targeted Drug Delivery Vehicles for Cere-bral Ischemia Therapy. Biomaterials, 150, 137-149. https://doi.org/10.1016/j.biomaterials.2017.10.012
|
[47]
|
Wiklander, O.P., Nordin, J.Z., O’Loughlin, A., et al. (2015) Extracellular Vesicle in Vivo Biodistribution Is Determined by Cell Source, Route of Administration and Targeting. Journal of Extracellular Vesicles, 4, Article No. 26316.
https://doi.org/10.3402/jev.v4.26316
|
[48]
|
Sun, D., Zhuang, X., Xiang, X., et al. (2010) A Novel Nanoparticle Drug Delivery System: The Anti-Inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes. Molecular Therapy, 18, 1606-1614.
https://doi.org/10.1038/mt.2010.105
|
[49]
|
Zhuang, X., Xiang, X., Grizzle, W., et al. (2011) Treatment of Brain In-flammatory Diseases by Delivering Exosome Encapsulated Anti-Inflammatory Drugs from the Nasal Region to the Brain. Molecular Therapy, 19, 1769-1779.
https://doi.org/10.1038/mt.2011.164
|
[50]
|
Huang, Z., Guo, L., Huang, L., et al. (2021) Baicalin-Loaded Macro-phage-Derived Exosomes Ameliorate Ischemic Brain Injury via the Antioxidative Pathway. Materials Science & Engi-neering C—Materials for Biological Applications, 126, Article ID: 112123. https://doi.org/10.1016/j.msec.2021.112123
|