细菌降解宿主组织模型行波解的局部渐近行为
Local Asymptotic Behavior of Traveling-Wave Solutions for Bacterial Degradation of Host Tissue Models
DOI: 10.12677/PM.2022.1211212, PDF, HTML, XML, 下载: 283  浏览: 363  科研立项经费支持
作者: 彭 叠:南华大学数理学院,湖南 衡阳;南华大学资源环境与安全工程学院,湖南 衡阳;易亚婷:南华大学数理学院,湖南 衡阳
关键词: 细菌降解宿主组织行波解渐近分析Bacterial Degradation Host Tissue Traveling-Wave Solution Asymptotic Analysis
摘要: 本文针对一类细菌降解宿主组织模型的行波解,为了研究行波解的局部稳定性,我们需要研究其渐近行为。我们将竞争系统转化为合作系统,讨论平衡点的类型和稳定性,并利用比较原理和渐近分析的方法,研究了它在不稳定点的渐近行为。
Abstract: In this paper, we aim at the traveling-wave solution of a class of bacterial degradation host tissue models. In order to study the local stability of the traveling-wave solution, we need to study its asymptotic behavior. We transform a competitive system into a cooperative system, discuss the types and stability of equilibrium points, and study its asymptotic behavior at unstable points using the method of comparison principle and asymptotic analysis.
文章引用:彭叠, 易亚婷. 细菌降解宿主组织模型行波解的局部渐近行为[J]. 理论数学, 2022, 12(11): 1966-1970. https://doi.org/10.12677/PM.2022.1211212

1. 背景

为了描述细胞外细菌病原体的过程,例如铜绿假单胞菌,能够通过外毒素和降解外酶的作用穿透宿主组织。King等人在文献 [1] 中介绍了一个数学模型,包括一个反应扩散方程和一个常微分方程。在没有显著免疫反应的情况下,预测细菌进入组织的行波,其速度可以根据模型参数明确地确定。在基于蛋白质的基质中进行了简单的体外实验,产生了与这种行为一致的结果。关于建模的详细背景和想法,可以参考文献 [1] [2],他们关注了细菌感染的速度。例如,烧伤的伤口可能侵入潜在组织(对患者产生可怕的潜在后果,特别是由败血症引起的死亡率)。由于对细菌感染的深入了解,该模型受到了越来越多的关注。Hilhorst等人在文献 [3] 中建立了时间依赖问题的解的存在唯一性,以及在大退化速率极限下对极限问题的收敛性。对于偏微分方程行波解的稳定性已经得到了很好地研究,例如,期刊文献 [4] - [14]、专著 [15] [16] 和调查论文 [17]。在文章 [18] [19] [20] [21] 中,Hilhorst等人研究了系统无量纲形式的存在性和行波解的行为,该系统作为细菌降解宿主组织的模型出现,模型如下:

{ u t = u x x u + v γ u ( 1 v ) , v t = u ( 1 v ) . (1)

其中u表示细菌产生的降解酶的浓度, 1 v 表示衡量健康组织的体积分数, γ 为正常数。人们一般认为细菌的种群密度与v成正比。

通过简单的计算,易得系统(1)有两个常数平衡点 e 0 = ( 0 , 0 ) e 1 = ( 1 , 1 ) 。其中, e 0 是不稳定的, e 1 是稳定的。因此,系统(1)就是单稳态的单调系统。通过做以下变化

u ( x , t ) = U ¯ ( z ) , v ( x , t ) = V ¯ ( z ) , z = x c t , (2)

然后可以得到

( U ¯ , V ¯ ) ( ) = e 1 , ( U ¯ , V ¯ ) ( + ) = e 0 . (3)

结合方程(1),得到关于 ( U ¯ , V ¯ ) ( z ) 的系统:

{ U ¯ z z + c U ¯ z U ¯ + V ¯ γ U ¯ ( 1 V ¯ ) = 0 , c V ¯ z + U ¯ ( 1 V ¯ ) = 0. (4)

进一步,使用变换 ( u , v ) ( x , t ) = ( U , V ) ( z , t ) 可以把方程(1)转化为以下系统

{ U t = U z z + c U z U + V γ U ( 1 V ) , V t = c V z + U ( 1 V ) . (5)

本文的目的是研究方程(1)稳态解的局部渐近行为。渐近行为可以作为行波解动力学性质很重要的部分,可以用来证明行波解的稳定性等。本文将具体分析行波解在平衡点附近的动力学行为。

我们的安排如下,第一节主要讨论系统的研究背景,并将竞争系统转换为合作系统,讨论了平衡点的稳定类型。第二节研究了在不稳定点处的局部渐近行为,并给出了在无穷远处的等价行为。第三节给出了本文的结论。

2. 在e0的局部渐近行为

在这个部分,我们将研究行波解 ( U ¯ , V ¯ ) ( z ) 在靠近平衡点(0, 0)的局部渐近行为。先讨论 z 时,系统(4)的渐近行为。让

( U ¯ , V ¯ ) ( z ) ~ ( ζ 1 e μ z , ζ 2 e μ z ) , (6)

其中,参数 ζ 1 , ζ 2 , μ 都为正的常数。把式(6)代入(4),线性化系统,得到

A ( μ ) ( ζ 1 ζ 2 ) = ( 0 0 ) , (7)

其中,

A ( μ ) = ( μ 2 c μ ( 1 + γ ) 1 1 c μ ) . (8)

这个方程(7)有非零的解,当且仅当 det ( A ) = 0 。因此,可以得到

μ 3 c μ 2 μ ( 1 + γ ) + 1 c = 0. (9)

假设 μ i ( i = 1 , 2 , 3 ) 是方程(9)的三个根,由韦达定理,根据根与系数的关系,得

μ 1 + μ 2 + μ 3 = c > 0 , μ 1 μ 2 μ 3 = 1 c < 0 , (10)

假设 g ( μ ) = μ 3 c μ 2 μ ( 1 + γ ) + 1 c ,那么计算可得 g ( 0 ) = 1 c > 0 g ( ) < 0 。因此,方程(9)存在一个负数根 μ 3 < 0 。那么其他的两个根 μ 1 μ 2 满足方程

μ 2 + ( μ 3 c ) μ 1 c μ 3 = 0. (11)

通过计算式(11),可以得到

μ 1 = ( c μ 3 ) ( c μ 3 ) 2 + 4 c μ 3 2 , μ 2 = ( c μ 3 ) + ( c μ 3 ) 2 + 4 c μ 3 2 . (12)

由文献 [20] 中引理2.2可知,当选取 c 0 , μ 0 时,我们假定 μ 0 = μ 1 = μ 2 ,其中 c 0 需要满足以下方程组

{ c 0 μ 0 = ( 1 + γ ) + ( 1 + γ ) 2 + 3 , 3 μ 0 2 = ( 1 + γ ) + 2 ( 1 + γ ) 2 + 3 . (13)

c c 0 时, μ 1 , μ 2 才是实数。此时,我们有 μ 3 < 0 < μ 1 < μ 2 。当 z 时,行波解 ( U ¯ , V ¯ ) ( z ) 的渐近行为可以表示为:

( U ¯ ( z ) V ¯ ( z ) ) C 1 ( ζ 1 ( μ 1 ) ζ 2 ( μ 1 ) ) e μ 1 z + C 2 ( ζ 1 ( μ 2 ) ζ 2 ( μ 2 ) ) e μ 2 z , (14)

其中,要么 C 1 > 0 ,或者 C 1 = 0 时, C 2 > 0 。特别的,特征值 μ i ( i = 1 , 2 ) 对应的特征向量可为

( ζ 1 ( μ i ) ζ 2 ( μ i ) ) = ( c μ i 1 ) . (15)

定理1. 对于任何的 c > c 0 ,波前解 U ¯ 有如下的渐近行为,当 z ,有

U ¯ ( z ) ~ C 1 e μ 1 z , C 1 > 0. (16)

证明:反证法,假设对于 c 1 > c 0 ,波前解 U ¯ 有如下的渐近行为,当 z ,有

U ¯ ( z ) ~ C 2 e μ 2 z , C 2 > 0. (17)

在这个假设条件下, ( U ¯ , V ¯ ) ( x c 1 t ) 是如下偏微分方程系统的解:

{ u t = u x x u + v γ u ( 1 v ) , v t = u ( 1 v ) . (18)

它的初值条件是

u ( x , 0 ) = U ¯ ( x ) , v ( x , 0 ) = V ¯ ( x ) . (19)

对于 c c 0 ,我们知道系统(15)存在一个单调的行波解。特别地,选取 c ( c 0 , c 1 ) ,假设 ( U , V ) ( x c t ) 是系统(15)具有初始条件的一个解,它的初始条件为

u ( x , 0 ) = U ( x ) , v ( x , 0 ) = V ( x ) . (20)

通过简单的计算这个解在系统(3)~(4)的 ± 处的渐近行为。我们总能得到(有必要的话,通过平移变换) U ¯ ( x ) U ( x ) ,通过比较原理,对于任意的 ( x , t ) ( , + ) ,我们可以得到

U ¯ ( x c 1 t ) U ( x c t ) , V ¯ ( x c 1 t ) V ( x c t ) . (21)

另一方面,让 ξ = x c 1 t ,显然 U ¯ ( ξ ) > 0 ,当 z ,有

U ( x c t ) = U ( ξ + ( c 1 c ) t ) ~ U ( + ) = 0 , (22)

而由(18)知, U ¯ ( ξ ) 0 。而这个结论与假设所得 U ¯ ( ξ ) > 0 矛盾,所以命题得证。

3. 结论

本文讨论行波解的渐近行为,是为了分析其局部稳定性和全局稳定性。本文的分析方法也可以适用于其他的竞争模型或者其余的反应扩散方程。

基金项目

湖南省教育厅资助项目:17C1363。

参考文献

[1] King, J.R., Koerber, A.J., Croft, J.M., Ward, J.P., Sockett, R.E. and Williams, P. (2003) Modelling Host Tissue Deg-radation by Extracellular Bacterial Pathogens. Mathematical Medicine and Biology: A Journal of the IMA, 20, 227-260.
https://doi.org/10.1093/imammb/20.3.227
[2] Ward, J.P., King, J.R., Koerber, A.J., Croft, J.M., Sockett, R.E. and Williams, P. (2004) Cell-Signalling Repression in Bacterial Quorum Sensing. Mathematical Medicine and Biology: A Journal of the IMA, 21, 169-204.
https://doi.org/10.1093/imammb/21.3.169
[3] Hilhorst, D., King, J.R. and Röger, M. (2007) Mathematical Analysis of a Model Describing the Invasion of Bacteria in Burn Wounds. Nonlinear Analysis: Theory, Methods & Ap-plications, 66, 1118-1140.
https://doi.org/10.1016/j.na.2006.01.009
[4] Fife, P.C. and McLeod, J.B. (1981) A Phase Plane Discussion of Convergence to Travelling Fronts for Nonlinear Diffusion. Archive for Rational Mechanics and Analysis, 75, 281-314.
https://doi.org/10.1007/BF00256381
[5] Gallay, T. (1994) Local Stability of Critical Fronts in Nonlinear Parabolic Partial Differential Equations. Nonlinearity, 7, 741-764.
https://doi.org/10.1088/0951-7715/7/3/003
[6] Hou, X. and Li, Y. (2006) Local Stability of Traveling-Wave Solutions of Nonlinear Reaction-Diffusion Equations, Discrete and Continuous Dynamical Systems-Series A, 15, 681-701.
https://doi.org/10.3934/dcds.2006.15.681
[7] Kirchgässner, K. (1992) On the Nonlinear Dynamics of Travelling Fronts. Journal of Differential Equations, 96, 256-278.
https://doi.org/10.1016/0022-0396(92)90153-E
[8] Ma, S. and Zhao, X.-Q. (2008) Global Asymptotic Stability of Minimal Fronts in Monostable Lattice Equations. Discrete and Continuous Dynamical Systems—Series A, 21, 259-275.
https://doi.org/10.3934/dcds.2008.21.259
[9] Moet, H.J.K. (1979) A Note on the Asymptotic Behavior of Solutions of the KPP Equation. SIAM Journal on Mathematical Analysis, 10, 728-732.
https://doi.org/10.1137/0510067
[10] Sattinger, D.H. (1976) On the Stability of Waves of Nonlinear Parabolic Systems. Advances in Mathematics, 22, 312-355.
https://doi.org/10.1016/0001-8708(76)90098-0
[11] Shen, W. (1999) Travelling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities. I. Stability and Uniqueness. Journal of Differential Equations, 159, 1-54.
https://doi.org/10.1006/jdeq.1999.3651
[12] Tsai, J.-C. and Sneyd, J. (2005) Existence and Stability of Traveling Waves in Buffered Systems. SIAM Journal on Applied Mathematics, 66, 237-265.
https://doi.org/10.1137/040618291
[13] Wu, Y. and Xing, X. (2008) Stability of Traveling Waves with Critical Speeds for p-Degree Fisher-Type Equations. Discrete and Continuous Dynamical Systems—Series A, 20, 1123-1139.
https://doi.org/10.3934/dcds.2008.20.1123
[14] Lv, G. and Wang, M. (2010) Nonlinear Stability of Travelling Wave Fronts for Delayed Reaction Diffusion Equations. Nonlinearity, 23, 845-873.
https://doi.org/10.1088/0951-7715/23/4/005
[15] Bramson, M. (1983) Convergence of Solutions of the Kolmo-gorov Equation to Travelling Waves. Memoirs of the American Mathematical Society, 44, 190.
https://doi.org/10.1090/memo/0285
[16] Volpert, A.I., Volpert, V.A. and Volpert, V. (1994) Traveling Wave So-lutions of Parabolic Systems. In: Translations of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence.
https://doi.org/10.1090/mmono/140
[17] Xin, J. (2000) Front Propagation in Heterogeneous Media. SIAM Review, 42, 161-230.
https://doi.org/10.1137/S0036144599364296
[18] Hilhorst, D., King, J.R. and Röger, M. (2007) Travelling-Wave Analysis of a Model Describing Tissue Degradation by Bacteria. European Journal of Applied Mathematics, 18, 583-605.
https://doi.org/10.1017/S0956792507007139
[19] Alhasanat, A. and Ou, C. (2019) Stability of Traveling Waves to the Lotka-Volterra Competition Model. Complexity, 2019, Article ID: 6569520.
https://doi.org/10.1155/2019/6569520
[20] Zhang, T., Chen, D., Han, Y. and Ma, M. (2021) Linear Determinacy of the Minimal Wave Speed of a Model Describing Tissue Degradation by Bacteria. Applied Mathematics Letters, 121, Article ID: 107044.
https://doi.org/10.1016/j.aml.2021.107044
[21] Hess, P. (1991) Periodic-Parabolic Boundary Value Problems and Positivity. In: Pitman Research Notes in Mathematics Series, Vol. 247, Longman Scientific & Technical, Harlow, UK.