|
[1]
|
Hsiao, Y.-H., Chang, C.-H. and Gean, P.-W. (2018) Impact of Social Relationships on Alzheimer’s Memory Impairment: Mechanistic Studies. Journal of Biomedical Science, 25, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ren, R., Qi, J., Lin, S., et al. (2022) The China Alzheimer Report 2022. General Psychiatry, 35, e100751. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hummel, F.C. and Cohen, L.G. (2005) Drivers of Brain Plasticity. Current Opinion in Neurology, 18, 667-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
von Bernhardi, R., Eugenín-von Bernhardi, L. and Eugenín, J. (2017) What Is Neural Plasticity? In: von Bernhardi, R., Eugenín, J. and Muller, K., Eds., The Plastic Brain. Advances in Experimental Medicine and Biology, Vol. 1015, Springer, Cham, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bailey, C.H., Kandel, E.R. and Harris, K.M. (2015) Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harbor Perspectives in Biology, 7, Article ID: a21758. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tönnies, E. and Trushina, E. (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1105-1121. [Google Scholar] [CrossRef]
|
|
[7]
|
Chen, Y.G. (2018) Research Progress in the Pathogenesis of Alzheimer’s Disease. Chinese Medical Journal, 131, 1618-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Armstrong, R.A. (2011) The Pathogenesis of Alzheimer’s Disease: A Reevaluation of the “Amyloid Cascade Hypothesis”. International Journal of Alzheimer’s Disease, 2011, Article ID: 630865. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Barage, S.H. and Sonawane, K.D. (2015) Amyloid Cascade Hypothesis: Pathogenesis and Therapeutic Strategies in Alzheimer’s Disease. Neuropeptides, 52, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gralle, M. and Ferreira, S.T. (2007) Structure and Functions of the Human Amyloid Precursor Protein: The Whole Is More than the Sum of Its Parts. Progress in Neurobiology, 82, 11-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rivera, I., Capone, R., Cauvi, D.M., Arispe, N. and De Maio, A. (2018) Modulation of Alzheimer’s Amyloid β Peptide Oligomerization and Toxicity by Extracellular Hsp70. Cell Stress and Chaperones, 23, 269-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Biundo, F., Del Prete, D., Zhang, H., Arancio, O. and D’Adamio, L. (2018) A Role for Tau in Learning, Memory and Synaptic Plasticity. Scientific Reports, 8, Article No. 3184. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guan, P.-P., Cao, L.-L. and Wang, P. (2021) Elevating the Levels of Calcium Ions Exacerbate Alzheimer’s Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. International Journal of Molecular Sciences, 22, Article No. 5900. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Domise, M., Didier, S., Marinangeli, C., et al. (2016) AMP-Activated Protein Kinase Modulates Tau Phosphorylation and Tau Pathology in Vivo. Scientific Reports, 6, Article No. 26758. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
González-Reyes, R.E., Nava-Mesa, M.O., Vargas-Sánchez, K., Ariza-Salamanca, D. and Mora-Muñoz, L. (2017) Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Frontiers in Molecular Neuroscience, 10, Article 427. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cai, Z., Hussain, M. D. and Yan, L.-J. (2014) Microglia, Neuroinflammation, and Beta-Amyloid Protein in Alzheimer’s Disease. International Journal of Neuroscience, 124, 307-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ahmad, M.H., Fatima, M. and Mondal, A.C. (2019) Influence of Microglia and Astrocyte Activation in the Neuroinflammatory pathogenesis of Alzheimer’s Disease: Rational Insights for the Therapeutic Approaches. Journal of Clinical Neuroscience, 59, 6-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hampel, H., Mesulam, M.M., Cuello, A.C., et al. (2018) The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141, 1917-1933. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Davies, P. and Maloney, A.J. (1976) Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet, 308, 1403. [Google Scholar] [CrossRef]
|
|
[20]
|
Mesulam, M.M. (2013) Cholinergic Circuitry of the Human Nucleus Basalis and Its Fate in Alzheimer’s Disease. Journal of Comparative Neurology, 521, 4124-4144. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cho, C.H., Kim, E.-A., Kim, J., et al. (2016) N-Adamantyl-4-Methylthiazol-2-Amine Suppresses Amyloid β-Induced Neuronal Oxidative Damage in Cortical Neurons. Free Radical Research, 50, 678-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Veurink, G., Fuller, S.J., Atwood, C.S. and Martins, R.N. (2003) Review Genetics, Lifestyle and the Roles of Amyloid β and Oxidative Stress in Alzheimer’s Disease. Annals of Human Biology, 30, 639-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bai, R., Guo, J., Ye, X.Y., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mutisya, E.M., Bowling, A.C. and Beal, M.F. (1994) Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer’s Disease. Journal of Neurochemistry, 63, 2179-2184. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, Z. and Zhong, C. (2014) Oxidative Stress in Alzheimer’s Disease. Neuroscience Bulletin, 30, 271-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Takuma, K., Yao, J., Huang, J., et al. (2005) ABAD Enhances Aβ-Induced Cell Stress via Mitochondrial Dysfunction. The FASEB Journal, 19, 1-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mercerón-Martínez, D., Ibaceta-González, C., Salazar, C., et al. (2021) Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. Journal of Alzheimer’s Disease, 82, S37-S50. [Google Scholar] [CrossRef]
|
|
[28]
|
Pascual-Leone, A., Freitas, C., Oberman, L., et al. (2011) Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI. Brain Topography, 24, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Babiloni, C., Ferri, R., Noce, G., et al. (2021) Abnormalities of Cortical Sources of Resting State Alpha Electroencephalographic Rhythms Are Related to Education Attainment in Cognitively Unimpaired Seniors and Patients with Alzheimer’s Disease and Amnesic Mild Cognitive Impairment. Cerebral Cortex, 31, 2220-2237. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sobral, M., Pestana, M.H. and Paúl, C. (2015) Cognitive Reserve and the Severity of Alzheimer’s Disease. Arquivos de Neuro-Psiquiatria, 73, 480-486. [Google Scholar] [CrossRef]
|
|
[31]
|
Russell-Williams, J., Jaroudi, W., Perich, T., et al. (2018) Mindfulness and Meditation: Treating Cognitive Impairment and Reducing Stress in Dementia. Reviews in the Neurosciences, 29, 791-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Leggieri, M., Thaut, M. H., Fornazzari, L., et al. (2019) Music Intervention Approaches for Alzheimer’s Disease: A Review of the Literature. Frontiers in Neuroscience, 13, Article 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Fang, R., Ye, S., Huangfu, J. and Calimag, D.P. (2017) Music Therapy Is a Potential Intervention for Cognition of Alzheimer’s Disease: A Mini-Review. Translational Neurodegeneration, 6, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Gallego, M.G. and García, J.G. (2015) Musicoterapia en la Enfermedad de Alzheimer: Efectos Cognitivos, Psicológicos y Conductuales. Neurología, 32, 300-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Simmons-Stern, N.R., Budson, A.E. and Ally, B.A. (2010) Music as a Memory Enhancer in Patients with Alzheimer’s Disease. Neuropsychologia, 48, 3164-3167. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Herholz, S.C. and Zatorre, R.J. (2012) Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76, 486-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Tang, Y.-Y. and Leve, L.D. (2016) A Translational Neuroscience Perspective on Mindfulness Meditation as a Prevention Strategy. Translational Behavioral Medicine, 6, 63-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Simkin, D.R. and Black, N.B. (2014) Meditation and Mindfulness in Clinical Practice. Child and Adolescent Psychiatric Clinics, 23, 487-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tang, Y.-Y., Hölzel, B. and Posner, M.I. (2016) Traits and States in Mindfulness Meditation. Nature Reviews Neuroscience, 17, 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tang, Y.-Y., Hölzel, B. and Posner, M.I. (2015) The Neuroscience of Mindfulness Meditation. Nature Reviews Neuroscience, 16, 213-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Meng, Q., Lin, M.S. and Tzeng, I.S. (2020) Relationship between Exercise and Alzheimer’s Disease: A Narrative Literature Review. Frontiers in Neuroscience, 14, Article 131. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., et al. (2020) Physical Exercise in the Prevention and Treatment of Alzheimer’s Disease. Journal of Sport and Health Science, 9, 394-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Radak, Z., Hart, N., Sarga, L., Koltai, E., et al. (2010) Exercise Plays a Preventive Role against Alzheimer’s Disease. Journal of Alzheimer’s Disease, 20, 777-783. [Google Scholar] [CrossRef]
|
|
[44]
|
Ribarič, S. (2022) Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer’s Disease Patients. International Journal of Molecular Sciences, 23, Article No. 3245. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jansen, I. E., Savage, J. E., Watanabe, K., et al. (2019) Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nature Genetics, 51, 404-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, S., Zhu, L., Peng, Y., et al. (2022) Long-Term Running Exercise Improves Cognitive Function and Promotes Microglial Glucose Metabolism and Morphological Plasticity in the Hippocampus of APP/PS1 Mice. Journal of Neuroinflammation, 19, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Devanne, H. and Allart, E. (2019) Boosting Brain Motor Plasticity with Physical Exercise. Neurophysiologie Clinique, 49, 91-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lima Giacobbo, B., Doorduin, J., Klein, H.C., et al. (2019) Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56, 3295-3312. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chen, J.-H., Ke, K.-F., Lu, J.-H., Qiu, Y.-H. and Peng, Y.-P. (2015) Protection of TGF-β1 against Neuroinflammation and Neurodegeneration in Aβ1-42-Induced Alzheimer’s Disease Model Rats. PLOS ONE, 10, e116549. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Friedler, B., Crapser, J. and McCullough, L. (2015) One Is the Deadliest Number: The Detrimental Effects of Social Isolation on Cerebrovascular Diseases and Cognition. Acta Neuropathologica, 129, 493-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Devi, L. and Ohno, M. (2015) TrkB Reduction Exacerbates Alzheimer’s Disease-Like Signaling Aberrations and Memory Deficits without Affecting β-Amyloidosis in 5XFAD Mice. Translational Psychiatry, 5, e562. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Stern, Y. (2006) Cognitive Reserve and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 20, S69-S74. [Google Scholar] [CrossRef] [PubMed]
|