[1]
|
Nakamura, F. and Goshima, Y. (2002) Structural and Functional Relation of Neuropilins. In: Bagnard, D., Ed., Neuro-pilin: From Nervous System to Vascular and Tumor Biology, Springer, Berlin, 55-69.
https://doi.org/10.1007/978-1-4615-0119-0_5
|
[2]
|
Dhupar, R., Jones, K.E., Powers, A.A., et al. (2022) Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Frontiers in Immunology, 13, Article ID: 830169.
https://doi.org/10.3389/fimmu.2022.830169
|
[3]
|
Ni, Q., Sun, J.L., Ma C., et al. (2018) The Neuropilins and Their Ligands in Hematogenous Metastasis of Salivary Adenoid Cystic Carcinoma—An Immunohistochemical Study. Journal of Oral and Maxillofacial Surgery, 76, 569-579.
https://doi.org/10.1016/j.joms.2017.08.038
|
[4]
|
Dimou, A., Nasarre, C., Peterson, Y.K., et al. (2021) Neuro-pilin-2b Facilitates Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. The Journal of Thoracic and Cardiovascular Surgery, 162, 463-473.
https://doi.org/10.1016/j.jtcvs.2020.03.166
|
[5]
|
Wittmann, P., Grubinger, M., Gröger, C., et al. (2015) Neuro-pilin-2 Induced by Transforming Growth Factor-β Augments Migration of Hepatocellular Carcinoma Cells. BMC Cancer, 15, 909.
https://doi.org/10.1186/s12885-015-1919-0
|
[6]
|
Takahashi, T., Nakamura, F., Jin, Z., et al. (1998) Semaphorins A and E Act as Antagonists of Neuropilin-1 and Agonists of Neuropilin-2 Receptors. Nature Neuroscience, 1, 487-493. https://doi.org/10.1038/2203
|
[7]
|
Siemerink, M.J., Klaassen, I., Vogels, I.M.C., et al. (2012) CD34 Marks Angio-genic Tip Cells in Human Vascular Endothelial Cell Cultures. Angiogenesis, 15, 151-163. https://doi.org/10.1007/s10456-011-9251-z
|
[8]
|
Alto, L.T. and Terman, J.R. (2017) Semaphorins and Their Sig-naling Mechanisms. Methods in Molecular Biology, 1493, 1-25. https://doi.org/10.1007/978-1-4939-6448-2_1
|
[9]
|
Toledano, S., Nir-Zvi, I., Engelman, R., et al. (2019) Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. International Journal of Molecular Sciences, 20, 556.
https://doi.org/10.3390/ijms20030556
|
[10]
|
Parker, M.W., Linkugel, A.D., Goel, H.L., et al. (2015) Structural Basis for VEGF-C Binding to Neuropilin-2 and Sequestration by a Soluble Splice Form. Structure, 23, 677-687. https://doi.org/10.1016/j.str.2015.01.018
|
[11]
|
Roy, S., Bag, A.K., Dutta, S., et al. (2018) Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions. Cancer Research, 78, 5600-5617. https://doi.org/10.1158/0008-5472.CAN-18-0562
|
[12]
|
Rizzolio, S., Battistini, C., Cagnoni, G., et al. (2018) Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Onco-gene-Targeted Therapies. Cancer Research, 78, 1058-1068.
https://doi.org/10.1158/0008-5472.CAN-17-2020
|
[13]
|
Duncan, B.W., Mohan, V., Wade, S.D., et al. (2021) Sem-aphorin3F Drives Dendritic Spine Pruning through Rho- GTPase Signaling. Molecular Neurobiology, 58, 3817-3834. https://doi.org/10.1007/s12035-021-02373-2
|
[14]
|
Li, Y., Tong, F.C., Zhang, Y.Y., et al. (2022) Neuropilin-2 Sig-naling Modulates Mossy Fiber Sprouting by Regulating Axon Collateral Formation Through CRMP2 in a Rat Model of Epilepsy. Molecular Neurobiology, 59, 6817-6833.
https://doi.org/10.1007/s12035-022-02995-0
|
[15]
|
Gao, X., Mao, Y.-H., Xiao, C.T., et al. (2018) Calpain-2 Trig-gers Prostate Cancer Metastasis via Enhancing CRMP4 Promoter Methylation through NF-κB/DNMT1 Signaling Path-way. Prostate, 78, 682-690.
https://doi.org/10.1002/pros.23512
|
[16]
|
Watterston, C., Halabi, R., McFarlane, S. and Childs, S.J. (2021) Endothe-lial Semaphorin 3fb Regulates Vegf Pathway-Mediated Angiogenic Sprouting. PLOS Genetics, 17, e1009769. https://doi.org/10.1371/journal.pgen.1009769
|
[17]
|
Karolak, J.A., Gambin, T., Szafranski, P., et al. (2021) Pertur-bation of Semaphorin and VEGF Signaling in ACDMPV Lungs Due to FOXF1 Deficiency. Respiratory Research, 22, 212. https://doi.org/10.1186/s12931-021-01797-7
|
[18]
|
Yang, Y., Zhang, B., Yang, Y.F., et al. (2022) FOXM1 Accelerates Wound Healing in Diabetic Foot Ulcer by Inducing M2 Macrophage Polarization through a Mechanism In-volving SEMA3C/NRP2/Hedgehog Signaling. Diabetes Research and Clinical Practice, 184, Article ID: 109121. https://doi.org/10.1016/j.diabres.2021.109121
|
[19]
|
Kong, D., Zhou, H.B., Neelakantan, D., et al. (2021) VEGF-C Mediates Tumor Growth and Metastasis through Promoting EMT-Epithelial Breast Cancer Cell Crosstalk. Oncogene, 40, 964-979.
https://doi.org/10.1038/s41388-020-01539-x
|
[20]
|
Goel, H.L., Pursell, B., Chang, C., et al. (2013) GLI1 Regulates a Novel Neuropilin-2/α6β1 Integrin Based Autocrine Pathway That Contributes to Breast Cancer Initiation. EMBO Mo-lecular Medicine, 5, 488-508.
https://doi.org/10.1002/emmm.201202078
|
[21]
|
Elaimy, A.L., Amante, J.J., Zhu, L., et al. (2019) The VEGF Re-ceptor Neuropilin 2 Promotes Homologous Recombination by Stimulating YAP/TAZ-Mediated Rad51 Expression. Pro-ceedings of the National Academy of Sciences of the United States of America, 116, 14174-14180. https://doi.org/10.1073/pnas.1821194116
|
[22]
|
Po, A., Silvano, M., Miele, E., et al. (2017) Noncanonical GLI1 Signaling Promotes Stemness Features and in Vivo Growth in Lung Adenocarcinoma. Oncogene, 36, 4641-4652. https://doi.org/10.1038/onc.2017.91
|
[23]
|
Luo, X., He, J.-Y., Xu, J., et al. (2020) Vascular NRP2 Triggers PNET Angiogenesis by Activating the SSH1-Cofilin Axis. Cell & Bioscience, 10, 113. https://doi.org/10.1186/s13578-020-00472-6
|
[24]
|
Wang, J., Li, J.J., Yin, L.J., et al. (2022) Neuropilin-2 Promotes Lineage Plasticity and Progression to Neuroendocrine Prostate Cancer. Oncogene, 41, 4307-4317. https://doi.org/10.1038/s41388-022-02437-0
|
[25]
|
Marimuthu, S., Lakshmanan, I., Muniyan, S., et al. (2022) MUC16 Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma by Upregulating NRP2-Associated Cell Ad-hesion. Molecular Cancer Research, 20, 1208-1221.
https://doi.org/10.1158/1541-7786.MCR-21-0888
|
[26]
|
Lee, G., Kang, Y.E., Oh, C., et al. (2020) Neuropilin-2 Promotes Growth and Progression of Papillary Thyroid Cancer Cells. Auris Nasus Larynx, 47, 870-880. https://doi.org/10.1016/j.anl.2020.03.013
|
[27]
|
Chang, X., Yang, Q., Zhang, C.H., et al. (2019) Roles for VEGF-C/NRP-2 Axis in Regulating Renal Tubular Epithelial Cell Survival and Autophagy during Serum Deprivation. Cell Biochemistry and Function, 37, 290-300.
https://doi.org/10.1002/cbf.3402
|
[28]
|
Chi, J., Wang, L., Zhang, X.H., et al. (2018) Cyclosporin A Induces Au-tophagy in Cardiac Fibroblasts through the NRP-2/WDFY-1 Axis. Biochimie, 148, 55-62. https://doi.org/10.1016/j.biochi.2018.02.017
|
[29]
|
Schulz, A., Gorodetska, I., Behrendt, R., et al. (2019) Linking NRP2 with EMT and Chemoradioresistance in Bladder Cancer. Frontiers in Oncology, 9, 1461. https://doi.org/10.3389/fonc.2019.01461
|
[30]
|
Gemmill, R.M., Nasarre, P., Nair-Menon, J., et al. (2017) The Neu-ropilin 2 Isoform NRP2b Uniquely Supports TGFβ- Mediated Progression in Lung Cancer. Science Signaling, 10, eaag0528. https://doi.org/10.1126/scisignal.aag0528
|
[31]
|
Poghosyan, S., Frenkel, N., Lentzas, A., et al. (2022) Loss of Neuropilin-2 in Murine Mesenchymal-Like Colon Cancer Organoids Causes Mesenchymal-to-Epithelial Transi-tion and an Acquired Dependency on Insulin-Receptor Signaling and Autophagy. Cancers (Basel), 14, 671. https://doi.org/10.3390/cancers14030671
|
[32]
|
Yang, E., Tacchelly-Benites, O., Wang, Z.H., et al. (2016) WNT Pathway Activation by ADP-Ribosylation. Nature Communications, 7, Article No. 11430. https://doi.org/10.1038/ncomms11430
|
[33]
|
Kang, Y., Zhang, Y.Y., Zhang, Y. and Sun, Y. (2021) NRP2, a Poten-tial Biomarker for Oral Squamous Cell Carcinoma. American Journal of Translational Research, 13, 8938.
|
[34]
|
Goel, H.L., Pursell, B., Standley, C., et al. (2012) Neuropilin-2 Regulates α6β1 Integrin in the Formation of Focal Adhesions and Signaling. Journal of Cell Science, 125, 497-506. https://doi.org/10.1242/jcs.094433
|
[35]
|
Guo, Y., Zhang, Q., Chen, H.L., et al. (2019) Overexpression of Calcitonin Gene-Related Peptide Protects Mouse Cerebral Microvascular Endothelial Cells from High-Glucose-Induced Damage via ERK/HIF-1/VEGF Signaling. Journal of Physiological Sci-ences, 69, 939-952. https://doi.org/10.1007/s12576-019-00708-2
|
[36]
|
Wang, L., Wang, L.L., Wang, S.Y., et al. (2021) N2E4, a Monoclonal Antibody Targeting Neuropilin-2, Inhibits Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma via Suppressing FAK/Erk/HIF-1alpha Signaling. Frontiers in Oncology, 11, Article ID: 657008. https://doi.org/10.3389/fonc.2021.657008
|
[37]
|
Wang, M., Li, C.L., Cai, T.Z., et al. (2022) Circ_CHFR Promotes Platelet-Derived Growth Factor-BB-Induced Proliferation, Invasion, and Migration in Vascular Smooth Muscle Cells via the miR-149-5p/NRP2 Axis. Journal of Cardiovascular Pharmacology, 79, e94-e102. https://doi.org/10.1097/FJC.0000000000001055
|
[38]
|
Peng, H., Liu, S.F., Li, Y., et al. (2022) A Novel cir-cUBR4/miR-491-5p/NRP2 ceRNA Network Regulates Oxidized Low-Density Lipoprotein-induced Proliferation and Migration in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 79, 512-522. https://doi.org/10.1097/FJC.0000000000001204
|
[39]
|
Xie, Z., Liu, S., Chu, S.C., Liu, Y.Q., et al. (2021) lncRNA RMRP Predicts Poor Prognosis and Mediates Tumor Progression of Esophageal Squamous Cell Carcinoma by Regulat-ing miR-613/Neuropilin 2 (NRP2) Axis. Bioengineered, 12, 6913-6922. https://doi.org/10.1080/21655979.2021.1974656
|
[40]
|
Wang, Y., Yin, H. and Chen, X. (2021) Circ-LDLRAD3 Enhances Cell Growth, Migration, and Invasion and Inhibits Apoptosis by Regulating MiR-224-5p/NRP2 Axis in Gas-tric Cancer. Digestive Diseases and Sciences, 66, 3862-3871.
https://doi.org/10.1007/s10620-020-06733-1
|
[41]
|
Liu, A., Liu, L. and Lu, H. (2019) LncRNA XIST Facilitates Proliferation and Epithelial-Mesenchymal Transition of Colorectal Cancer Cells through Targeting miR-486-5p and Pro-moting Neuropilin-2. Journal of Cellular Physiology, 234, 13747-13761. https://doi.org/10.1002/jcp.28054
|
[42]
|
Zhao, M., Zhang, M.M., Tao, Z.H., et al. (2020) miR-331-3p Suppresses Cell Proliferation in TNBC Cells by Downregulating NRP2. Technology in Cancer Research and Treatment, 19. https://doi.org/10.1177/1533033820905824
|
[43]
|
Li, P., Zeng, Y., Chen, Y.D., et al. (2022) LRP11-AS1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer Cells via the miR-149-3p/NRP2 Axis. Cancer Cell In-ternational, 22, 116.
https://doi.org/10.1186/s12935-022-02536-8
|