聚乳酸与碳酸钙复合物的制备及碳酸钙的降解抑制作用
Preparation of the PLA/CaCO3 Composites and the Retardation Effect of the CaCO3 on the Hydrolytic Degradation of the PLA in the Composites
摘要: 采用熔融共混法,将聚乳酸(PLA)与碳酸钙(CaCO3)(2%、5%和7%)复合制备聚乳酸/碳酸钙复合物。通过复合物和纯PLA在磷酸盐缓冲溶液中浸泡后,不同碳酸钙含量的复合物复合前后PLA发生粘度变化,研究CaCO3对PLA/CaCO3复合物中PLA降解的抑制作用,并提出抑制机理。PLA/CaCO3复合物的力学性能和耐水性能的结果表明,添加一定量CaCO3的复合材料的拉伸强度、断裂伸长率、弹性模量和最大负荷明显增强。通过吸水率的测定,表明吸水率值随着CaCO3含量(2%和5%)的不同变化不大,而当含量增加到7%时,吸水率增大较多。随着吸水实验介质的不同,在磷酸盐缓冲溶液中浸泡的吸水率略高于在蒸馏水中浸泡的吸水率。
Abstract: The poly (lactic acid) (PLA)/CaCO3 composites were prepared via melt blending in an intensive mixer of the torque rheometer. Hydrolytic degradation of the composites obtained was investigated comparatively with the pure PLA matrix. The hydrolytic degradation was carried out by immersing the film samples in phosphate buffer saline (pH = 7.4) at 37˚C, and the viscosity of the PLA in the degraded films was measured. The results indicated that the hydrolytic degradation of the PLA matrix in the composites was retarded as a result of the incorporation of the basic CaCO3 which would react with the partial end-carboxyl groups of the PLA matrix. It was showed that the tensile strength, elastic modulus, elongation at break and maximum load of the composites were enhanced significantly. Also it was found that the water absorption of the PLA/CaCO3 composites at low CaCO3 loading (2% and 5%) slightly increased compared with the pure PLA upon immersion for 4 weeks, while the PLA/CaCO3-7 composite had a much higher water absorption (5.5% - 6.0%) than the pure PLA in two immersion mediums. All composites exhibited slightly higher water resistance in the distilled water than in the phosphate buffer solution at pH = 7.4.
文章引用:关怀民, 黄世俊, 童跃进. 聚乳酸与碳酸钙复合物的制备及碳酸钙的降解抑制作用[J]. 材料科学, 2012, 2(2): 89-95. http://dx.doi.org/10.12677/ms.2012.22016

参考文献

[1] K. M. Nampoothiri, N. R. Nair and R. P. John. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101(22): 8493-8501.
[2] R. M. Rasal, A. V. Janorkar and D. E. Hirt. Poly (lactic acid) modifications. Progress in Polymer Science, 2010, 35(3): 338- 356.
[3] F. Rancan, A. Todorova, S. Hadam, et al. Stability of polylactic acid particles and release of fluorochromes upon topical application on human skin explants. European Journal of Pharmaceutics Biopharmaceutics, 2012, 80(1): 76-84.
[4] E. Mascheroni, V. Guillard, F. Nalin, et al. Diffusivity of propolis compounds in polylactic acid polymer for the development of antimicrobial packaging films. Journal of Food Engineering, 2010, 98(3): 294-301.
[5] L. Averous. Polylactic acid: Synthesis, properties and application. Monomers, polymers composites renewable resources. Amsterdam: Elsevier Ltd., 2008: 422-450.
[6] B. Gupta, N. Revagade and J. Hilborn. Polylactic acid fiber: An overview. Journal of Polymer Science, 2007, 32(4): 455-482.
[7] G. Pitarresi, F. S. Palumbo, C. Fiorica, et al. Electrospinning of , -poly(N-2-hydroxyethyl)-DL-aspartamide-graft-polylactic acid to produce a fibrillilar scaffold. European Polymer Journal, 2010, 46(2): 181-184.
[8] W. J. E. M. Habraken, J. G. C. Wolke and J. A. Jansen. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4-5): 234-248.
[9] H. Balakrishnan, A. Hassan, M. U. Wahit, et al. Novel toughened polylactic acid nanocomposite: Mechanical thermal and morpho- logical properties. Materials Design, 2010, 31(7): 3289-3298.
[10] 赖广兴, 童跃进, 关怀民. 聚乳酸接枝衣康酸及其增容聚乳酸/淀粉共混物的研究[J]. 现代化工, 2009, 29(10): 109-112.
[11] G. Pitarresi, F. S. Palumbo, A. Albanese, et al. In situ gel forming graft copolymers of a polyaspartamide and polylactic acid: Preparation and characterization. European Polymer Journal, 2008, 44(11): 3764-3775.
[12] G. H. Yew, A. M. M. Yusof, Z. A. M. Ishak and U. S. Ishiaku. Water absorption and enzymatic degradation of polylactic acid/rice starch composites. Polymer Degradation Stability, 2005, 90(3): 488-500.
[13] K. I. Park, M. Xanthos. A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polymer Degradation Stability, 2009, 94(5): 834-844.
[14] P. L. Lin, H. W. Fang, T. Tseng and W. H. Lee. Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Materials Letters, 2007, 61(14-15): 3009-3013.
[15] A. P. Kumar, D. Depan, N. S. Tomer and R. P. Singh. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Progress in Polymer Science, 2009, 34(6): 479-515.
[16] S. H. Lee, S. H. Kim, Y. K. Han, et al. Synthesis and degradation of end-group-functionalized polylactide. Journal of Polymer Science, A: Polymer Chemistry, 2001, 39(7): 973-985.
[17] N. Reddy, D. Nama and Y. Yang. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation Stability, 2008, 93(1): 233-241.
[18] K. Gorna, M. Hund, M. Vučak, F. Gröhn and G. Wegner. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Materials Science Engineering: A, 2008, 477(1-2): 217-225.
[19] T. Barany, T. Czigany and J. Karger-Kocsis. Application of the Essential Work of Fracture (EWF) concept for polymers, related blends and composites: A review. Progress in Polymer Science, 2010, 35(10): 1257-1287.
[20] M. S. Lslam, K L. Pickering and N. J. Foreman. Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites Part A: Applied Science Manufacturing, 2010, 41(5): 596-603.
[21] S. Chung. Chain-end scission in acid catalyzed hydrolysis of polylactide in solution. Journal of Controlled Release, 1995, 34(1): 9-15.
[22] R. Dorati, C. Colonna, I. Genta, T. Modena and B. Conti. Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polymer Degradation Stability, 2010, 95(4): 694-701.
[23] R. P. Félix Lanao, S. C. G. Leeuwenburgh, J. G. C. Wolke and J. A. Jansen. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomaterialia, 2011, 7(9): 3459-3468.
[24] H. Tsuji, K. Karashi. In vitro hydrolysis of polylactide crystalline residues as extended-chain crystallites III. Effects of pH and enzyme. Polymer Degradation Stability, 2004, 85(1): 647-656.
[25] F. Susanne, R. Mats and A. Anders. Effect of divalent cations on pore formation and degradation of poly (D,L-lactide-co- glycolide). Pharmaceutical Development and Technology, 2007, 12(6): 563-572.