摘要: 本文考虑如下形式的非线性Schrödinger方程
u(x)%3Df(x%2Cu)%2Cx%5Cin%20R%5EN%7D_%7Bu%5Cin%20H%5E1(R%5EN)%2CN%5Cge%203%7D&chs=30)
(P)。利用有界区域逼近和集中紧致原理,当位势函数
&chs=17)
不恒等于常数,非线性项
&chs=17)
不恒等于
&chs=17)
,本文证明了方程(P)存在最低能量解。
Abstract:
In this paper, we are concerned with the following nonlinear Schrödinger equation
u(x)%3Df(x%2Cu)%2Cx%5Cin%20R%5EN%7D_%7Bu%5Cin%20H%5E1(R%5EN)%2CN%5Cge%203%7D&chs=30)
(P). By using the bounded domain approximate scheme and concen-tration compactness principle, we prove the existence of a ground state solution of (P) on the Nehari manifold when
%5Cne%20&chs=17)
constant and
%5Cne%20f(u)&chs=17)
.