n-李代数与 n-泊松结构
n-Lie Algebra and n-Poisson Structure
摘要: 本文从高阶角度出发,首先研究 -李代数的结构常数,它是作为李代数的自然推广,是基本乘法运算为 n- 元线性运算的一种代数系统。其次通过定义流形上的n-泊松括号引出 n-泊松结构的定义及性质,得到 n-李代数与 n-泊松结构一一对应关系。最后在向量从上研究余切从上的 n-李代数胚,给出了 n-李代数胚的余态射与 n-泊松映射的关系。
Abstract:
In this paper, we first study the structural constants of n-Lie algebras, which is a natural generalization of Lie algebras and an algebraic system whose basic multiplication operations are linear operations of n-elements. Secondly, the definition and properties of n-Poisson structure are derived by defining the n-Poisson bracket on a manifold and the one-to-one correspondence between n-Lie algebras and n-Poisson structure is obtained. Finally, we study the n-Lie algebras on cotangent bundles, and give the relation between the comorphism of n-Lie algebras and n-Poisson mapping.
参考文献
|
[1]
|
Filippov, T. (1985) n-Lie Algebras. Siberian Mathematical Journal, 26, 879-891. [Google Scholar] [CrossRef]
|
|
[2]
|
Kasymov, Sh.M. (1987) On a Theory of n-Lie Algebras. Algebra and Logic, 26, 155-166. [Google Scholar] [CrossRef]
|
|
[3]
|
Nambu, Y. (1973) Generalized Hamiltonian Dynamics. Physical Review D, 7, 2405-2412. [Google Scholar] [CrossRef]
|
|
[4]
|
Takhtajan, L. (1994) On Foundation of the Generalized Nambu Mechanics. Communications
in Mathematical Physics, 160, 295-315. [Google Scholar] [CrossRef]
|
|
[5]
|
de Azcarraga, J.A. and Izquierdo, J.M. (2010) n-ary Algebras: A Review with Applications.
Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 293001.
|
|
[6]
|
Liu, Z., Weinstein, A. and Xu, P. (1997) Manin Triples for Lie Bialgebroids. Journal of Dif-
ferential Geometry, 45, 547-745. [Google Scholar] [CrossRef]
|
|
[7]
|
Meinrenken, E. (2018) Poisson Geometry from a Dirac Perspective. Letters in Mathematical
Physics, 108, 447-498.
|
|
[8]
|
Vallejo, J.A. (2001) Nambu-Poisson Manifolds and Associated n-ary Lie Algebroids. Journal
of Physics A: Mathematical and General, 34, 9753. [Google Scholar] [CrossRef]
|