|
[1]
|
von Keudell, A. and Schulz-von der Gathen, V. (2017) Foundations of Low-Temperature Plasma Physics—An Introduc-tion. Plasma Sources Science and Technology, 26, Article ID: 113001. [Google Scholar] [CrossRef]
|
|
[2]
|
Langmuir, I. (1928) Oscillations in Ionized Gases. Proceedings of the National Academy of Sciences, 14, 627-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Schram, D.C. (2009) Is Plasma Unique? The Presence of Electrons and the Importance of Charge. Plasma Sources Science and Technology, 18, Article ID: 014003. [Google Scholar] [CrossRef]
|
|
[4]
|
Kim, M.H., Cho, J.H., Ban, S.B., Choi, R.Y., Kwon, E.J., Park, S.J. and Eden, J.G. (2013) Efficient Generation of Ozone in Arrays of Microchannel Plasmas. Journal of Physics D: Applied Physics, 46, Article ID: 305201. [Google Scholar] [CrossRef]
|
|
[5]
|
Eden, J.G., Park, S.J., Herring, C.M. and Bulson, J.M. (2011) Microplasma Light Tiles: Thin Sheet Lamps for General Illumination. Journal of Physics D: Applied Physics, 44, Article ID: 224011. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, H.L., Lee, H.M., Chen, S.H., Chang, M.B., Yu, S.J. and Li, S.N. (2009) Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications. Environmental Sci-ence & Technology, 43, 2216-2227. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Neyts, E.C., Ostrikov, K., Sunkara, M.K. and Bogaerts, A. (2016) Correc-tion: Plasma Catalysis: Synergistic Effects at the Nanoscale. Chemical Reviews, 116, 767-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rouwenhorst, K.H.R., Engelmann, Y., van’t Veer, K., Postma, R.S., Bogaerts, A. and Lefferts, L. (2020) Plasma-Driven Catalysis: Green Ammonia Synthesis with Intermittent Elec-tricity. Green Chemistry, 22, 6258-6287. [Google Scholar] [CrossRef]
|
|
[9]
|
Liu, S., Winter, L.R. and Chen, J.G. (2020) Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO2 and CH4. ACS Catalysis, 10, 2855-2871. [Google Scholar] [CrossRef]
|
|
[10]
|
Okubo, M. (2022) Recent Development of Technology in Scale-Up of Plasma Reactors for Environmental and Energy Applications. Plasma Chemistry and Plasma Processing, 42, 3-33. [Google Scholar] [CrossRef]
|
|
[11]
|
Bogaerts, A., Tu, X., Whitehead, J.C., Centi, G., Lefferts, L., Guaitella, O., Azzolina-Jury, F., Kim, H.-H., Murphy, A.B., Schneider, W.F., Nozaki, T., Hicks, J. C, Rousseau, A., Thevenet, F., Khacef, A. and Carreon, M. (2020) The 2020 Plasma Catalysis Roadmap. Journal of Physics D: Applied Physics, 53, Article ID: 443001. [Google Scholar] [CrossRef]
|
|
[12]
|
Qu, M., Cheng, Z., Sun, Z., Chen, D., Yu, J. and Chen, J. (2021) Non-Thermal Plasma Coupled with Catalysis for VOCs Abatement: A Review. Process Safety and Environmental Pro-tection, 153, 139-158. [Google Scholar] [CrossRef]
|
|
[13]
|
Li, Y., Fan, Z., Shi, J., Liu, Z. and Shangguan, W. (2014) Post Plasma-Catalysis for VOCs Degradation over Different Phase Structure MnO2 Catalysts. Chemical Engineering Journal, 241, 251-258. [Google Scholar] [CrossRef]
|
|
[14]
|
Feng, X., Liu, H., He, C., Shen, Z. and Wang, T. (2018) Synergistic Effects and Mechanism of a Non-Thermal Plasma Catalysis System in Volatile Organic Compound Removal: A Review. Catalysis Science & Technology, 8, 936-954. [Google Scholar] [CrossRef]
|
|
[15]
|
Kim, H.-H., Teramoto, Y., Negishi, N. and Ogata, A. (2015) A Multi-disciplinary Approach to Understand the Interactions of Nonthermal Plasma and Catalyst: A Review. Catalysis Today, 256, 13-22. [Google Scholar] [CrossRef]
|
|
[16]
|
Snoeckx, R. and Bogaerts, A. (2017) Plasma Technology—A Novel Solution for CO2 Conversion? Chemical Society Reviews, 46, 5805-5863. [Google Scholar] [CrossRef]
|
|
[17]
|
Sivachandiran, L., Thevenet, F. and Rousseau, A. (2015) Isopropanol Removal Using MnXOY Packed Bed Non- Thermal Plasma Reactor: Comparison between Continuous Treatment and Sequential Sorption/Regeneration. Chemical Engineering Journal, 270, 327-335. [Google Scholar] [CrossRef]
|
|
[18]
|
Nie, Y., Wang, J., Zhong, K., Wang, L. and Guan, Z. (2007) Syner-gy Study for Plasma-Facilitated C2H4 Selective Catalytic Reduction of NOx over Ag/γ-Al2O3 Catalyst. IEEE Transac-tions on Plasma Science, 35, 663-669. [Google Scholar] [CrossRef]
|
|
[19]
|
Gholami, R., Stere, C.E., Goguet, A. and Hardacre, C. (2017) Non-Thermal-Plasma-Activated de-NOx Catalysis. IEEE Transactions on Plasma SciencePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, Article ID: 20170054. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Stere, C.E., Adress, W., Burch, R., Chansai, S., Goguet, A., Graham, W.G. and Hardacre, C. (2015) Probing a Non- Thermal Plasma Activated Heterogeneously Catalyzed Reaction Using in Situ DRIFTS-MS. ACS Catalysis, 5, 956-964. [Google Scholar] [CrossRef]
|
|
[21]
|
Rajanikanth, B.S., Srinivasan, A.D. and Ravi, V. (2005) Discharge Plasma Treatment for NOx Reduction from Diesel Engine Exhaust: A Laboratory Investigation. IEEE Transactions on Dielec-trics and Electrical Insulation, 12, 72-80. [Google Scholar] [CrossRef]
|
|
[22]
|
Rodriguez, M.M., Bill, E., Brennessel, W.W. and Holland, P.L. (2011) N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex. Science, 334, 780-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mehta, P., Barboun, P., Herrera, F.A., Kim, J., Rumbach, P., Go, D.B., Hicks, J.C. and Schneider, W.F. (2018) Overcoming Ammonia Synthesis Scaling Relations with Plasma-Enabled Catalysis. Nature Catalysis, 1, 269-275. [Google Scholar] [CrossRef]
|
|
[24]
|
Mehta, P., Barboun, P., Go, D.B., Hicks, J.C. and Schneider, W.F. (2019) Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. ACS Energy Letters, 4, 1115-1133. [Google Scholar] [CrossRef]
|
|
[25]
|
Rouwenhorst, K.H.R., Kim, H.-H. and Lefferts, L. (2019) Vibrationally Excited Activation of N2 in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. ACS Sustainable Chemistry & Engineering, 7, 17515-17522. [Google Scholar] [CrossRef]
|
|
[26]
|
Hong, J., Pancheshnyi, S., Tam, E., Lowke, J.J., Prawer, S. and Murphy, A.B. (2017) Kinetic Modelling of NH3 Production in N2-H2 Non-Equilibrium Atmospheric-Pressure Plas-ma Catalysis. Journal of Physics D: Applied Physics, 50, Article ID: 154005. [Google Scholar] [CrossRef]
|
|
[27]
|
Van’t Veer, K., Engelmann, Y., Reniers, F. and Bogaerts, A. (2020) Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows. The Journal of Physical Chemistry C, 124, 22871-22883. [Google Scholar] [CrossRef]
|
|
[28]
|
Hong, J., Prawer, S. and Murphy, A.B. (2018) Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustainable Chemistry & Engineering, 6, 15-31. [Google Scholar] [CrossRef]
|
|
[29]
|
Gorbanev, Y., Vervloessem, E., Nikiforov, A. and Bogaerts, A. (2020) Nitrogen Fixation with Water Vapor by Non- Equilibrium Plasma: Toward Sustainable Ammonia Production. ACS Sustainable Chemistry & Engineering, 8, 2996- 3004. [Google Scholar] [CrossRef]
|
|
[30]
|
Sharma, R.K., Patel, H., Mushtaq, U., Kyriakou, V., Zafei-ropoulos, G., Peeters, F., Welzel, S., van de Sanden, M.C.M. and Tsampas, M.N. (2021) Plasma Activated Electrochem-ical Ammonia Synthesis from Nitrogen and Water. ACS Energy Letters, 6, 313-319. [Google Scholar] [CrossRef]
|
|
[31]
|
Bogaerts, A., Kozák, T., van Laer, K. and Snoeckx, R. (2015) Plasma-Based Conversion of CO2: Current Status and Future Challenges. Faraday Discussions, 183, 217-232. [Google Scholar] [CrossRef]
|
|
[32]
|
Thema, M., Bauer, F. and Sterner, M. (2019) Power-to-Gas: Electrolysis and Methanation Status Review. Renewable and Sustainable Energy Reviews, 112, 775-787. [Google Scholar] [CrossRef]
|
|
[33]
|
Dębek, R., Azzolina-Jury, F., Travert, A. and Maugé, F. (2019) A Review on Plasma-Catalytic Methanation of Carbon Dioxide—Looking for an Efficient Catalyst. Renewable and Sus-tainable Energy Reviews, 116, Article ID: 109427. [Google Scholar] [CrossRef]
|
|
[34]
|
Ahmad, F., Lovell, E.C., Masood, H., Cullen, P.J., Ostrikov, K.K., Scott, J.A. and Amal, R. (2020) Low-Temperature CO2 Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System. ACS Sustainable Chemistry & Engineering, 8, 1888-1898. [Google Scholar] [CrossRef]
|
|
[35]
|
Parastaev, A., Hoeben, W.F.L.M., van Heesch, B.E.J.M., Kosinov, N. and Hensen, E.J.M. (2018) Temperature- Programmed Plasma Surface Reaction: An Approach to Determine Plasma-Catalytic Performance. Applied Catalysis B: Environmental, 239, 168-177. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, L., Yi, Y., Guo, H. and Tu, X. (2018) Atmospheric Pres-sure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2. ACS Catalysis, 8, 90-100. [Google Scholar] [CrossRef]
|
|
[37]
|
Kim, J., Abbott, M.S., Go, D.B. and Hicks, J.C. (2016) En-hancing C-H Bond Activation of Methane via Temperature-Controlled, Catalyst-Plasma Interactions. ACS Energy Letters, 1, 94-99. [Google Scholar] [CrossRef]
|
|
[38]
|
Kim, J., Go, D.B. and Hicks, J.C. (2017) Synergistic Effects of Plasma-Catalyst Interactions for CH4 Activation. Physical Chemistry Chemical Physics, 19, 13010-13021. [Google Scholar] [CrossRef]
|
|
[39]
|
Sheng, Z., Watanabe, Y., Kim, H.-H., Yao, S. and Nozaki, T. (2020) Plasma-Enabled Mode-Selective Activation of CH4 for Dry Reforming: First Touch on the Kinetic Analysis. Chemical Engineering Journal, 399, Article ID: 125751. [Google Scholar] [CrossRef]
|
|
[40]
|
Wang, L., Yi, Y., Wu, C., Guo, H. and Tu, X. (2017) One-Step Reforming of CO2 and CH4 into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Ca-talysis. Angewandte Chemie International Edition, 56, 13679-13683. [Google Scholar] [CrossRef] [PubMed]
|