[1]
|
Bebeshko, V.G., Bruslova, K.M., Lyashenko, L.O., et al. (2020) Prognosis of Acute Leukemia Depending on the Iron Metabolism Parameters in Children after Chornobyl Nuclear Power Plant Accident. Problemy Radiatsiinoi Medytsyny ta Radiobiolohii, 25, 390-401.
|
[2]
|
Ihlow, J., Gross, S., Sick, A., et al. (2019) AML: High Serum Ferritin at Initial Diag-nosis Has a Negative Impact on Long-Term Survival. Leukemia & Lymphoma, 60, 69-77. https://doi.org/10.1080/10428194.2018.1461860
|
[3]
|
Lebon, D., Vergez, F., Bertoli, S., et al. (2015) Hyperfer-ritinemia at Diagnosis Predicts Relapse and Overall Survival in Younger AML Patients with Intermediate-Risk Cytoge-netics. Leukemia Research, 39, 818-821.
https://doi.org/10.1016/j.leukres.2015.05.001
|
[4]
|
Alkhateeb, A.A. and Connor, J.R. (2010) Nuclear Ferritin: A New Role for Ferritin in Cell Biology. Biochimica et Biophysica Acta, 1800, 793-797. https://doi.org/10.1016/j.bbagen.2010.03.017
|
[5]
|
Bertoli, S., Paubelle, E., Bérard, E., et al. (2019) Ferritin Heavy/Light Chain (FTH1/FTL) Expression, Serum Ferritin Levels, and Their Functional as Well as Prognostic Roles in Acute Myeloid Leukemia. European Journal of Haematology, 102, 131-142. https://doi.org/10.1111/ejh.13183
|
[6]
|
Buranrat, B. and Connor, J.R. (2015) Cytoprotective Effects of Ferritin on Doxorubicin-Induced Breast Cancer Cell Death. Oncology Reports, 34, 2790-2796. https://doi.org/10.3892/or.2015.4250
|
[7]
|
Canzoneri, J.C. and Oyelere, A.K. (2008) Interaction of Anthracyclines with Iron Responsive Element mRNAs. Nucleic Acids Research, 36, 6825-6834. https://doi.org/10.1093/nar/gkn774
|
[8]
|
Chan, L.S.A., Gu, L.C. and Wells, R.A. (2021) The Effects of Secondary Iron Overload and Iron Chelation on a Radiation-Induced Acute Myeloid Leukemia Mouse Model. BMC Cancer, 21, 509.
https://doi.org/10.1186/s12885-021-08259-9
|
[9]
|
黄贵清, 廖清奎, 罗春华. 急性白血病患儿外周血白血病细胞TfR表达与细胞增殖力和铁代谢的关系[J]. 中华血液学杂志, 1999(3): 134.
|
[10]
|
Tachibana, T. andou, T., Tanaka, M., et al. (2018) Clinical Significance of Serum Ferritin at Diagnosis in Patients with Acute Myeloid Leukemia: A YACHT Multicenter Retrospective Study. Clinical Lymphoma, Myeloma & Leukemia, 18, 415-421. https://doi.org/10.1016/j.clml.2018.03.009
|
[11]
|
Tachibana, T., Tanaka, M., Takasaki, H., et al. (2011) Pretransplant Serum Ferritin Is Associated with Bloodstream Infections within 100 Days of Allogeneic Stem Cell Transplantation for Myeloid Malignancies. International Journal of Hematology, 93, 368-374. https://doi.org/10.1007/s12185-011-0784-0
|
[12]
|
Wermke, M., Eckoldt, J., Götze, K.S., et al. (2018) Enhanced La-bile Plasma Iron and Outcome in Acute Myeloid Leukaemia and Myelodysplastic Syndrome after Allogeneic Haemopoi-etic Cell Transplantation (ALLIVE): A Prospective, Multicentre, Observational Trial. The Lancet Haematology, 5, e201-e210.
https://doi.org/10.1016/S2352-3026(18)30036-X
|
[13]
|
Artz, A.S., Logan, B., Zhu, X., et al. (2016) The Prognostic Value of Serum C-Reactive Protein, Ferritin, and Albumin Prior to Allogeneic Transplantation for Acute Myeloid Leu-kemia and Myelodysplastic Syndromes. Haematologica, 101, 1426-1433. https://doi.org/10.3324/haematol.2016.145847
|
[14]
|
Alva, L.C., Bacher, U., Seipel, K., et al. (2018) Iron Overload Is Correlated with Impaired Autologous Stem Cell Mobilization and Survival in Acute Myeloid Leukemia. Transfusion, 58, 2365-2373. https://doi.org/10.1111/trf.14895
|
[15]
|
Yang, Y., Tang, Z., An, T., et al. (2019) The Impact of Iron Chelation Therapy on Patients with Lower/Intermediate IPSS MDS and the Prognostic Role of Elevated Serum Ferritin in Patients with MDS and AML: A Meta-Analysis. Medicine, 98, e17406. https://doi.org/10.1097/MD.0000000000017406
|
[16]
|
Kantarjian, H., Kadia, T., DiNardo, C., et al. (2021) Acute Myeloid Leukemia: Current Progress and Future Directions. Blood Cancer Journal, 11, 41. https://doi.org/10.1038/s41408-021-00425-3
|
[17]
|
Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. The New England Journal of Medicine, 373, 1136-1152. https://doi.org/10.1056/NEJMra1406184
|
[18]
|
Zhu, S., Liu, J., Kang, R., et al. (2021) Targeting NF-κB-Dependent Alkaliptosis for the Treatment of Venetoclax-Resistant Acute Myeloid Leukemia Cells. Biochemical and Biophysical Re-search Communications, 562, 55-61.
https://doi.org/10.1016/j.bbrc.2021.05.049
|
[19]
|
Shao, R., Wang, H., Liu, W., et al. (2021) Establishment of a Prognostic Ferroptosis-Related Gene Profile in Acute Myeloid Leukaemia. Journal of Cellular and Molecular Medicine, 25, 10950-10960.
https://doi.org/10.1111/jcmm.17013
|
[20]
|
Park, J.M., Mau, C.Z., Chen, Y.C., et al. (2021) A Case-Control Study in Taiwanese Cohort and Meta-Analysis of Serum Ferritin in Pancreatic Cancer. Scientific Reports, 11, Article No. 21242.
https://doi.org/10.1038/s41598-021-00650-7
|
[21]
|
Greenberg, P.L., Attar, E., Bennett, J.M., et al. (2011) NCCN Clinical Practice Guidelines in Oncology: Myelodysplastic Syndromes. Journal of the National Comprehensive Cancer Network: JNCCN, 9, 30-56.
|
[22]
|
贾国存, 高举, 廖清奎, 等. 白血病细胞可变铁池的检测及其意义[J]. 中国实验血液学杂志, 2006(3): 468-470.
|
[23]
|
Estrov, Z., Tawa, A., Wang, X.H., et al. (1987) In Vitro and in Vivo Effects of Deferoxamine in Neonatal Acute Leukemia. Blood, 69, 757-761. https://doi.org/10.1182/blood.V69.3.757.757
|
[24]
|
Cho, B.S., Jeon, Y.W., Hahn, A.R., et al. (2019) Improved Sur-vival Outcomes and Restoration of Graft-vs-Leukemia Effect by Deferasirox after Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia. Cancer Medicine, 8, 501-514. https://doi.org/10.1002/cam4.1928
|
[25]
|
Serpell, B.G., Freeman, S., Ritchie, D., et al. (2020) Altitude Exposure as a Training & Iron Overload Management Strategy Post Leu-kemia. Journal of Science and Medicine in Sport, 23, 75-81.
https://doi.org/10.1016/j.jsams.2019.08.292
|
[26]
|
Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355.
https://doi.org/10.1038/nrc3495
|
[27]
|
Le, N.T. and Richardson, D.R. (2004) Iron Chelators with High Antiprolifer-ative Activity Up-Regulate the Expression of a Growth Inhibitory and Metastasis Suppressor Gene: A Link between Iron Metabolism and Proliferation. Blood, 104, 2967-2975. https://doi.org/10.1182/blood-2004-05-1866
|
[28]
|
Birsen, R., Larrue, C., Decroocq, J., et al. (2022) APR-246 Induces Early Cell Death by Ferroptosis in Acute Myeloid Leukemia. Haematologica, 107, 403-416. https://doi.org/10.3324/haematol.2020.259531
|
[29]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[30]
|
Luo, L., Wang, H., Tian, W., et al. (2021) Targeting Ferroptosis for Cancer Therapy: Iron Metabolism and Anticancer Immunity. American Journal of Cancer Research, 11, 5508-5525. https://doi.org/10.7150/thno.65480
|
[31]
|
Grignano, E., Birsen, R., Chapuis, N., et al. (2020) From Iron Chelation to Overload as a Therapeutic Strategy to Induce Ferroptosis in Leukemic Cells. Frontiers in Oncology, 10, Ar-ticle ID: 586530.
https://doi.org/10.3389/fonc.2020.586530
|
[32]
|
Du, Y., Bao, J., Zhang, M.J., et al. (2020) Targeting Ferroptosis Contributes to ATPR-Induced AML Differentiation via ROS-Autophagy-Lysosomal Pathway. Gene, 755, Article ID: 144889. https://doi.org/10.1016/j.gene.2020.144889
|
[33]
|
Wang, M.P., Joshua, B., Jin, N.Y., et al. (2022) Ferrop-tosis in Viral Infection: The Unexplored Possibility. Acta Pharmacologica Sinica, 43, 1905-1915.
|
[34]
|
Olcay, L., Hazirolan, T., Yildirmak, Y., et al. (2014) Biochemical, Radiologic, Ultrastructural, and Genetic Evaluation of Iron Overload in Acute Leukemia and Iron-Chelation Therapy. Journal of Pediatric Hematology/Oncology, 36, 281-292. https://doi.org/10.1097/MPH.0b013e3182a11698
|
[35]
|
Knovich, M.A., Storey, J.A., Coffman, L.G., et al. (2009) Ferritin for the Clinician. Blood Reviews, 23, 95-104.
https://doi.org/10.1016/j.blre.2008.08.001
|
[36]
|
Zhu, H.Y., Huang, Z.X., Chen, G.Q., et al. (2019) Typhaneoside Prevents Acute Myeloid Leukemia (AML) through Suppressing Proliferation and Inducing Ferroptosis Associated with Autophagy. Biochemical and Biophysical Research Communications, 516, 1265-1271. https://doi.org/10.1016/j.bbrc.2019.06.070
|
[37]
|
Du, J., Wang, T., Li, Y., et al. (2019) DHA Inhibits Proliferation and Induces Ferroptosis of Leukemia Cells through Autophagy Dependent Degradation of Ferritin. Free Radical Biology & Medicine, 131, 356-369.
https://doi.org/10.1016/j.freeradbiomed.2018.12.011
|
[38]
|
Wenzel, S.E., Tyurina, Y.Y., Zhao, J., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.e26. https://doi.org/10.1016/j.cell.2017.09.044
|
[39]
|
Yusuf, R.Z., Saez, B., Sharda, A., et al. (2020) Aldehyde Dehydro-genase 3a2 Protects AML Cells from Oxidative Death and the Synthetic Lethality of Ferroptosis Inducers. Blood, 136, 1303-1316.
https://doi.org/10.1182/blood.2019001808
|
[40]
|
Dong, L.H., Huang, J.J., Zu, P., et al. (2021) CircKDM4C Upreg-ulates P53 by Sponging Hsa-let-7b-5p to Induce Ferroptosis in Acute Myeloid Leukemia. Environmental Toxicology, 36, 1288-1302. https://doi.org/10.1002/tox.23126
|
[41]
|
Li, M., Chen, X., Wang, X., et al. (2021) RSL3 Enhances the Antitumor Effect of Cisplatin on Prostate Cancer Cells via Causing Glycolysis Dysfunction. Biochemical Pharmacology, 192, Article ID: 114741.
https://doi.org/10.1016/j.bcp.2021.114741
|
[42]
|
Liu, S., Cao, X., Wang, D., et al. (2022) Iron Metabolism: State of the Art in Hypoxic Cancer Cell Biology. Archives of Biochemistry and Biophysics, 723, Article ID: 109199. https://doi.org/10.1016/j.abb.2022.109199
|