[1]
|
Liu, H.D., Li, W., Chen, Z.R., et al. (2013) Increased Expression of Ferritin in Cerebral Cortex after Human Traumatic Brain Injury. Neurological Sciences, 34, 1173-1180. https://doi.org/10.1007/s10072-012-1214-7
|
[2]
|
Dutt, S., Hamza, I. and Bartnikas, T.B. (2022) Molecular Mechanisms of Iron and Heme Metabolism. Annual Review of Nutrition, 42, 311-335. https://doi.org/10.1146/annurev-nutr-062320-112625
|
[3]
|
Wen, Z., Zhao, Y., Gong, Z., et al. (2022) The Mechanism of Action of Ginkgolic Acid (15:1) against Gram-Positive Bacteria Involves Cross Talk with Iron Ho-meostasis. Microbiology Spectrum, 10, e0099121.
https://doi.org/10.1128/spectrum.00991-21
|
[4]
|
Gulec, S. anderson, G.J. and Collins, J.F. (2014) Mechanistic and Regulatory Aspects of intestinal Iron Absorption. The American Journal of Physiology-Gastrointestinal and Liver Phys-iology, 307, G397-G409.
https://doi.org/10.1152/ajpgi.00348.2013
|
[5]
|
Chifman, J., Laubenbacher, R. and Torti, S.V. (2014) A Systems Biology Approach to Iron Metabolism. Advances in Experimental Medicine and Biology, 844, 201-225. https://doi.org/10.1007/978-1-4939-2095-2_10
|
[6]
|
Wang, J. and Pantopoulos, K. (2011) Regulation of Cellular Iron Metabolism. Biochemical Journal, 434, 365-381.
https://doi.org/10.1042/BJ20101825
|
[7]
|
Prajapati, M., Conboy, H.L., Hojyo, S., et al. (2021) Biliary Excretion of Excess Iron in Mice Requires Hepatocyte Iron Import by Slc39a14. Journal of Biological Chemistry, 297, Article ID: 100835.
https://doi.org/10.1016/j.jbc.2021.100835
|
[8]
|
Katsarou, A. and Pantopoulos, K. (2020) Basics and Principles of Cellular and Systemic Iron Homeostasis. Molecular Aspects of Medicine, 75, Article ID: 100866. https://doi.org/10.1016/j.mam.2020.100866
|
[9]
|
Drakesmith, H., Nemeth, E. and Ganz, T. (2015) Ironing out Fer-roportin. Cell Metabolism, 22, 777-787.
https://doi.org/10.1016/j.cmet.2015.09.006
|
[10]
|
Balusikova, K., Dostalikova-Cimburova, M., Tacheci, I., et al. (2022) Expression Profiles of Iron Transport Molecules along the Duodenum. Journal of Cellular and Molecular Medi-cine, 26, 2995-3004.
https://doi.org/10.1111/jcmm.17313
|
[11]
|
Cegarra, L., Colins, A., Gerdtzen, Z.P., et al. (2019) Mathematical Mod-eling of the Relocation of the Divalent Metal Transporter DMT1 in the Intestinal Iron Absorption Process. PLOS ONE, 14, e0218123.
https://doi.org/10.1371/journal.pone.0218123
|
[12]
|
Lane, D.J., Merlot, A.M., Huang, M.L., et al. (2015) Cellular Iron Uptake, Trafficking and Metabolism: Key Molecules and Mechanisms and Their Roles in Disease. Biochimica et Biophysica Acta, 1853, 1130-1144.
https://doi.org/10.1016/j.bbamcr.2015.01.021
|
[13]
|
Peng, Y., Chang, X. and Lang, M. (2021) Iron Homeostasis Disorder and Alzheimer’s Disease. International Journal of Molecular Sciences, 22, 12442. https://doi.org/10.3390/ijms222212442
|
[14]
|
Krause, A., Neitz, S., Magert, H.J., et al. (2000) LEAP-1, a Novel Highly Disulfide-Bonded Human Peptide, Exhibits Antimicrobial Activity. FEBS Letters, 480, 147-150. https://doi.org/10.1016/S0014-5793(00)01920-7
|
[15]
|
Park, C.H., Valore, E.V., Waring, A.J., et al. (2001) Hep-cidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. Journal of Biological Chemistry, 276, 7806-7810. https://doi.org/10.1074/jbc.M008922200
|
[16]
|
Wojciechowska, M., Wisniewski, O.W., Kolodziejski, P., et al. (2021) Role of Hepcidin in Physiology and Pathophysiology. Emerging Experimental and Clinical Evidence. Journal of Physiology and Pharmacology, 72, 23-33.
|
[17]
|
Jordan, J.B., Poppe, L., Haniu, M., et al. (2009) Hepcidin Revisited, Disulfide Connectivity, Dynamics, and Structure. Journal of Biological Chemistry, 284, 24155-24167. https://doi.org/10.1074/jbc.M109.017764
|
[18]
|
Rishi, G. and Subramaniam, V.N. (2017) The Liver in Regulation of Iron Homeostasis. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 313, G157-G165. https://doi.org/10.1152/ajpgi.00004.2017
|
[19]
|
Merle, U., Fein, E., Gehrke, S.G., et al. (2007) The Iron Regulatory Peptide Hepcidin Is Expressed in the Heart and Regulated by Hypoxia and Inflammation. Endocrinology, 148, 2663-2668. https://doi.org/10.1210/en.2006-1331
|
[20]
|
Nguyen, N.B., Callaghan, K.D., Ghio, A.J., et al. (2006) Hepcidin Expression and Iron Transport in Alveolar Macrophages. American Journal of Physiology—Lung Cellular and Molecular Physiology, 291, L417-L425.
https://doi.org/10.1152/ajplung.00484.2005
|
[21]
|
Liu, X.B., Nguyen, N.B., Marquess, K.D., et al. (2005) Regula-tion of Hepcidin and Ferroportin Expression by Lipopolysaccharide in Splenic Macrophages. Blood Cells, Molecules, and Diseases, 35, 47-56.
https://doi.org/10.1016/j.bcmd.2005.04.006
|
[22]
|
Crielaard, B.J., Lammers, T. and Rivella, S. (2017) Targeting Iron Metabolism in Drug Discovery and Delivery. Nature Reviews Drug Discovery, 16, 400-423. https://doi.org/10.1038/nrd.2016.248
|
[23]
|
Liu, J., Sun, B., Yin, H., et al. (2016) Hepcidin: A Promising Therapeu-tic Target for Iron Disorders: A Systematic Review. Medicine (Baltimore), 95, e3150. https://doi.org/10.1097/MD.0000000000003150
|
[24]
|
Ginzburg, Y.Z. (2019) Hepcidin-Ferroportin Axis in Health and Disease. Vitamins and Hormones, 110, 17-45.
https://doi.org/10.1016/bs.vh.2019.01.002
|
[25]
|
Ganz, T. and Nemeth, E. (2011) Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine, 62, 347-360.
https://doi.org/10.1146/annurev-med-050109-142444
|
[26]
|
Donovan, A., Lima, C.A., Pinkus, J.L., et al. (2005) The Iron Exporter Ferroportin/Slc40a1 Is Essential for Iron Homeostasis. Cell Metabolism, 1, 191-200. https://doi.org/10.1016/j.cmet.2005.01.003
|
[27]
|
Ganz, T. and Nemeth, E. (2016) Iron Balance and the Role of Hep-cidin in Chronic Kidney Disease. Seminars in Nephrology, 36, 87-93. https://doi.org/10.1016/j.semnephrol.2016.02.001
|
[28]
|
Kim, G.H. (2020) Hepcidin as a Biomarker of Cardiorenal Syndrome. Journal of Korean Medical Science, 35, e20.
https://doi.org/10.3346/jkms.2020.35.e20
|
[29]
|
Malhotra, R., Wunderer, F., Barnes, H.J., et al. (2019) Hepcidin Deficiency Protects against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 178-187. https://doi.org/10.1161/ATVBAHA.118.312215
|
[30]
|
Ganz, T. (2003) Hepcidin, a Key Regulator of Iron Metabo-lism and Mediator of Anemia of Inflammation. Blood, 102, 783-788. https://doi.org/10.1182/blood-2003-03-0672
|
[31]
|
Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American Col-lege of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e876-e894.
https://doi.org/10.1161/CIR.0000000000001062
|
[32]
|
Virani, S.S., Alonso, A., Benjamin, E.J., et al. (2020) Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation, 141, e139-e596.
|
[33]
|
Roger, V.L. (2021) Epidemiology of Heart Failure: A Contemporary Perspective. Circulation Research, 128, 1421-1434. https://doi.org/10.1161/CIRCRESAHA.121.318172
|
[34]
|
Bozkurt, B. and Khalaf, S. (2017) Heart Failure in Women. Methodist DeBakey Cardiovascular Journal, 13, 216-223.
https://doi.org/10.14797/mdcj-13-4-216
|
[35]
|
Wenzel, J.P., Nikorowitsch, J., Bei der Kellen, R., et al. (2022) Heart Failure in the General Population and Impact of the 2021 European Society of Cardiology Heart Failure Guidelines. ESC Heart Failure Journal, 9, 2157-2169.
https://doi.org/10.1002/ehf2.13948
|
[36]
|
Ambrosy, A.P., Fonarow, G.C., Butler, J., et al. (2014) The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned from Hospitalized Heart Failure Registries. Journal of the American College of Cardiology, 63, 1123-1133. https://doi.org/10.1016/j.jacc.2013.11.053
|
[37]
|
Wang, H., Chai, K., Du, M., et al. (2021) Prevalence and Incidence of Heart Failure among Urban Patients in China: A National Population-Based Analysis. Circulation: Heart Failure, 14, e008406.
https://doi.org/10.1161/CIRCHEARTFAILURE.121.008406
|
[38]
|
Mclean, E., Cogswell, M., Egli, I., et al. (2009) Worldwide Prevalence of Anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutrition, 12, 444-454.
https://doi.org/10.1017/S1368980008002401
|
[39]
|
Loncar, G., Obradovic, D., Thiele, H., et al. (2021) Iron Defi-ciency in Heart Failure. ESC Heart Failure Journal, 8, 2368-2379. https://doi.org/10.1002/ehf2.13265
|
[40]
|
Cohen-Solal, A., Damy, T., Terbah, M., et al. (2014) High Prevalence of Iron Deficiency in Patients with Acute Decompensated Heart Failure. European Journal of Heart Failure, 16, 984-991. https://doi.org/10.1002/ejhf.139
|
[41]
|
Kobak, K.A., Radwanska, M., Dziegala, M., et al. (2019) Structural and Functional Abnormalities in Iron-Depleted Heart. Heart Failure Reviews, 24, 269-277. https://doi.org/10.1007/s10741-018-9738-4
|
[42]
|
Alnuwaysir, R.I.S., Hoes, M.F., Van Veldhuisen, D.J., et al. (2021) Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. Journal of Clinical Medicine, 11, 125. https://doi.org/10.3390/jcm11010125
|
[43]
|
Von Haehling, S., Ebner, N., Evertz, R., et al. (2019) Iron Deficiency in Heart Failure: An Overview. JACC: Heart Failure, 7, 36-46. https://doi.org/10.1016/j.jchf.2018.07.015
|
[44]
|
Ponikowska, B., Iwanek, G., Zdanowicz, A., et al. (2022) Bi-omarkers of Myocardial Injury and Remodeling in Heart Failure. Journal of Personalized Medicine, 12, 799. https://doi.org/10.3390/jpm12050799
|
[45]
|
Kremastinos, D.T. and Farmakis, D. (2011) Iron Overload Cardiomyo-pathy in Clinical Practice. Circulation, 124, 2253-2263. https://doi.org/10.1161/CIRCULATIONAHA.111.050773
|
[46]
|
Hider, R.C. and Kong, X. (2013) Iron: Effect of Overload and Deficiency. Metal Ions in Life Sciences, 13, 229-294.
https://doi.org/10.1007/978-94-007-7500-8_8
|
[47]
|
Das, S., Misra, A., Kashyap, A., et al. (2021) Study of Trans-fusion-Related Iron Overload (Trio) in Pediatric Patients with Hematological Malignancy and Bone Marrow Failure Syn-dromes. American Journal of Blood Research, 11, 384-390.
|
[48]
|
Gujja, P., Rosing, D.R., Tripodi, D.J., et al. (2010) Iron Overload Cardiomyopathy: Better Understanding of an Increasing Disorder. Journal of the American College of Cardiology, 56, 1001-1012. https://doi.org/10.1016/j.jacc.2010.03.083
|
[49]
|
Kane, S.F., Roberts, C. and Paulus, R. (2021) Hereditary Hemochromatosis: Rapid Evidence Review. American Family Physician, 104, 263-270.
|
[50]
|
Lakhal-Littleton, S., Wolna, M., Chung, Y.J., et al. (2016) An Essential Cell-Autonomous Role for Hep-cidin in Cardiac Iron Homeostasis. Elife, 5, e19804. https://doi.org/10.7554/eLife.19804
|
[51]
|
Island, M.L., Fatih, N., Leroyer, P., et al. (2011) GATA-4 Transcription Factor Regulates Hepatic Hepcidin Expression. Biochemical Journal, 437, 477-482. https://doi.org/10.1042/BJ20110225
|
[52]
|
Naito, Y., Hosokawa, M., Sawada, H., Oboshi, M., et al. (2014) Hepcidin Is Increased in the Hypertrophied Heart of Dahl Salt-Sensitive Rats. International Journal of Cardiolo-gy, 172, e45-e47.
https://doi.org/10.1016/j.ijcard.2013.12.067
|
[53]
|
Hsieh, Y.P., Huang, C.H., Lee, C.Y., et al. (2014) Silencing of Hepcidin Enforces the Apoptosis in Iron-Induced Human Cardiomyocytes. Journal of Occupational Medicine and Toxi-cology, 9, 11.
https://doi.org/10.1186/1745-6673-9-11
|
[54]
|
Mei, Z., Chen, J., Luo, S., et al. (2022) Comparative Efficacy of In-travenous and Oral Iron Supplements for the Treatment of Iron Deficiency in Patients with Heart Failure: A Network Meta-Analysis of Randomized Controlled Trials. Pharmacological Research, 182, Article ID: 106345. https://doi.org/10.1016/j.phrs.2022.106345
|
[55]
|
Lopez-Vilella, R., Lozano-Edo, S., Arenas Martin, P., et al. (2022) Impact of Intravenous Ferric Carboxymaltose on Heart Failure with Preserved and Reduced Ejection Fraction. ESC Heart Failure Journal, 9, 133-145.
https://doi.org/10.1002/ehf2.13753
|
[56]
|
Ismahel, H. and Ismahel, N. (2021) Iron Replacement Therapy in Heart Failure: A Literature Review. The Egyptian Heart Journal, 73, 85. https://doi.org/10.1186/s43044-021-00211-3
|