|
[1]
|
Kodjikian, L., Bellocq, D., Bandello, F., Loewenstein, A., et al. (2019) First-Line Treatment Algorithm and Guidelines in Center-Involving Diabetic Macular Edema. European Journal of Ophthalmology, 29, 573-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kusuhara, S., Shimura, M., Kitano, S., et al. (2022) Treatment of Diabetic Macular Edema in Real-World Clinical Practice: The Effect of Aging. Journal of Diabetes Investigation, 13, 1339-1346. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., et al. (2016) Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. Journal of Diabetes Research, 2016, Article ID: 2156273. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chakrabarti, S., Cukiernik, M., Hileeto, D., Evans, T. and Chen, S. (2000) Role of Vasoactive Factors in the Pathogenesis of Early Changes in Diabetic Retinopathy. Diabetes/Metabolism Research and Reviews, 16, 393-407. [Google Scholar] [CrossRef]
|
|
[6]
|
Alizadeh, E., Mammadzada, P. and Andre, H. (2018) The Different Facades of Retinal and Choroidal Endothelial Cells in Response to Hypoxia. International Journal of Molecular Sciences, 19, Article No. 3846. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pearlstein, D.P., Ali, M.H., Mungai, P.T., et al. (2002) Role of Mito-chondrial Oxidant Generation in Endothelial Cell Responses to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Bi-ology, 22, 566-573. [Google Scholar] [CrossRef]
|
|
[8]
|
Desai, T.R., Leeper, N.J., Hynes, K.L. and Gewertz, B.L. (2002) Interleukin-6 Causes Endothelial Barrier Dysfunction via the Protein Kinase C Pathway. Journal of Surgical Research, 104, 118-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chalam, K.V., Grover, S., Sambhav, K., Balaiya, S. and Murthy, R.K. (2014) Aqueous Interleukin-6 Levels Are Superior to Vascular Endothelial Growth Factor in Predicting Therapeutic Response to Bevacizumab in Age-Related Macular Degeneration. Journal of Ophthalmology, 2014, Article ID: 502174. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dong, F., Qin, X., Wang, B., et al. (2021) ALKBH5 Facili-tates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvi-ronment. Cancer Research, 81, 5876-5888. [Google Scholar] [CrossRef]
|
|
[12]
|
Yu, H., Huang, X., Ma, Y., et al. (2013) Interleukin-8 Reg-ulates Endothelial Permeability by Down-Regulation of Tight Junction but Not Dependent on Integrins Induced Focal Adhesions. International Journal of Biological Sciences, 9, 966-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, L., Zheng, J., Xu, Y., et al. (2019) Association between Interleukin-10 Gene Rs1800896 Polymorphism and Diabetic Reti-nopathy in a Chinese Han Population. Bioscience Reports, 39, Article ID: BSR20181382. [Google Scholar] [CrossRef]
|
|
[14]
|
da Silva Pereira, B.L., Polina, E.R., Crispim, D., et al. (2018) Interleu-kin-10 -1082A > G (rs1800896) Polymorphism Is Associated with Diabetic Retinopathy in Type 2 Diabetes. Diabetes Research and Clinical Practice, 138, 187-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yun, J.-H. (2021) Interleukin-1β Induces Pericyte Apoptosis via the NF-κB Pathway in Diabetic Retinopathy. Biochemical and Biophysical Research Communications, 546, 46-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cheng, S.C., Huang, W.C., Pang, J.-H.S., Wu, Y.-H. and Cheng, C.-Y. (2019) Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20, Article No. 2957. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Dror, E., Dalmas, E., Meier, D., et al. (2017) Postprandial Macro-phage-Derived IL-1β Stimulates Insulin, and Both Synergistically Promote Glucose Disposal and Inflammation. Nature Immunology, 18, 283-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lee, I.-T., Liu, S.-W., Chi, P.-L., et al. (2015) TNF-α Mediates PKCδ/JNK1/2/c-Jun-Dependent Monocyte Adhesion via ICAM-1 Induction in Human Retinal Pigment Epithelial Cells. PLOS ONE, 10, e117911. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Aveleira, C.A., Lin, C.-M., Abcouwer, S.F., Ambrósio, A.F. and Antonetti, D.A. (2010) TNF-α Signals through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Ret-inal Endothelial Cell Permeability. Diabetes, 59, 2872-2882. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Costa, G.N., Vindeirinho, J., Cavadas, C., Ambrósio, A.F. and Santos, P.F. (2012) Contribution of TNF Receptor 1 to Retinal Neural Cell Death Induced by Elevated Glucose. Molecular and Cellular Neuroscience, 50, 113-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Portillo, J.-A.C., Greene, J.A., Okenka, G., et al. (2014) CD40 Promotes the Development of Early Diabetic Retinopathy in Mice. Diabetologia, 57, 2222-2231. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Portillo, J.-A.C., Yu, J.-S., Vos, S., et al. (2022) Disruption of Retinal Inflammation and the Development of Diabetic Retinopathy in Mice by a CD40-Derived Peptide or Mutation of CD40 in Müller Cells. Diabetologia, 65, 2157-2171. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lange, C., Storkebaum, E., de Almodóvar, C., Dewerchin, M. and Carmeliet, P. (2016) Vascular Endothelial Growth Factor: A Neurovascular Target in Neurological Diseases. Nature Reviews Neurology, 12, 439-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kurihara, T., Westenskow, P. and Friedlander, M. (2014) Hypox-ia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M. and Bowes Rickman, C., Eds., Retinal Degenerative Diseases. Advances in Ex-perimental Medicine and Biology, Vol. 801, Springer, New York, 275-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Murata, T., Ishibashi, T., Khalil, A., et al. (1995) Vascular Endothelial Growth Factor Plays a Role in Hyperpermeability of Diabetic Retinal Vessels. Ophthalmic Research, 27, 48-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Apte, R.S., Chen, D.S. and Ferrara, N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176, 1248-1264. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Noma, H., Yasuda, K. and Shimura, M. (2021) Involvement of Cy-tokines in the Pathogenesis of Diabetic Macular Edema. International Journal of Molecular Sciences, 22, Article No. 3427. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Van Bergen, T., Etienne, I., Cunningham, F., et al. (2019) The Role of Placental Growth Factor (PlGF) and Its Receptor System in Retinal Vascular Diseases. Progress in Retinal and Eye Research, 69, 116-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tan, G.S., Cheung, N., Simó, R., Cheung, G.C. and Wong, T.Y. (2017) Diabetic Macular Oedema. The Lancet Diabetes and Endocrinology, 5, 143-155. [Google Scholar] [CrossRef]
|
|
[30]
|
Liang, W.-J., Yang, H.-W., Liu, H.-N., Qian, W. and Chen, X.-L. (2020) HMGB1 Upregulates NF-kB by Inhibiting IKB-α and Associates with Diabetic Retinopathy. Life Sciences, 241, Article ID: 117146. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nguyen, Q.D., De Falco, S., Behar-Cohen, F., et al. (2018) Placen-tal Growth Factor and Its Potential Role in Diabetic Retinopathy and Other Ocular Neovascular Diseases. Acta Ophthal-mologica, 96, e1-e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Balser, C., Wolf, A., Herb, M. and Langmann, T. (2019) Co-Inhibition of PGF and VEGF Blocks Their Expression in Mononuclear Phagocytes and Limits Neovascularization and Leakage in the Murine Retina. Journal of Neuroinflammation, 16, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Van Bergen, T., Hu, T.-T., Etienne, I., et al. (2017) NNeutraliza-tion of Placental Growth Factor as a Novel Treatment Option in Diabetic Retinopathy. Experimental Eye Research, 165, 136-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Noma, H., Mimura, T., Yasuda, K., et al. (2017) Aque-ous Humor Levels of Soluble Vascular Endothelial Growth Factor Receptor and Inflammatory Factors in Diabetic Macu-lar Edema. Ophthalmologica, 238, 81-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wells, J.A., Glassman, A.R., Ayala, A.R., et al. (2016) Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Ran-domized Clinical Trial. Ophthalmology, 123, 1351-1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hu, W. and Huang, Y. (2015) Targeting the Platelet-Derived Growth Factor Signalling in Cardiovascular Disease. Clinical and Experimental Pharmacology and Physiology, 42, 1221-1224. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hu, W., Zhang, Y., Wang, L., et al. (2016) Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 553-560. [Google Scholar] [CrossRef]
|
|
[38]
|
Sadiq, M.A., Hanout, M., Sarwar, S., et al. (2016) Plate-let-Derived Growth Factor Inhibitors: A Potential Therapeutic Approach for Ocular Neovascularization. Developments in Ophthalmology, 55, 310-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhou, L., Sun, X., Huang, Z., et al. (2018) Imatinib Ameliorated Retinal Neovascularization by Suppressing PDGFR-α and PDGFR-β. Cellular Physiology and Biochemistry, 48, 263-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wilkinson-Berka, J.L., Wraight, C. and Werther, G. (2006) The Role of Growth Hormone, Insulin-Like Growth Factor and Somatostatin in Diabetic Retinopathy. Current Medicinal Chemistry, 13, 3307-3317. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kaya, A., Kar, T., Aksoy, Y., Özalper, V. and Başbuğ, B. (2013) Insulin Analogues May Accelerate Progression of Diabetic Retinopathy after Impairment of Inner Blood-Retinal Barrier. Medical Hypotheses, 81, 1012-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Upreti, S., Sen, S., Nag, T.C. and Ghosh, M.P. (2022) Insulin Like Growth Factor-1 Works Synergistically With Dopamine to Attenuate Diabetic Retinopathy by Downregulating Vascular Endothelial Growth Factor. Biomedicine & Pharmacotherapy, 149, Article ID: 112868. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Dong, N., Li, X., Xiao, L., et al. (2012) Upregulation of Retinal Neuronal MCP-1 in the Rodent Model of Diabetic Retinopathy and Its Function in Vitro. Investigative Ophthalmology & Visual Science, 53, 7567-7575. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Raina, P., Sikka, R., Gupta, H., et al. (2021) Association of eNOS and MCP-1 Genetic Variants with Type 2 Diabetes and Diabetic Nephropathy Susceptibility: A Case-Control and Me-ta-Analysis Study. Biochemical Genetics, 59, 966-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Dong, N., Chang, L., Wang, B. and Chu, L. (2014) Retinal Neuronal MCP-1 Induced by AGEs Stimulates TNF-α Expression in Rat Microglia via p38, ERK, and NF-κB Pathways. Molecular Vision, 20, 616-628.
|
|
[46]
|
Stamatovic, S.M., Keep, R.F., Kunkel, S.L. and Andjelkovic, A.V. (2003) Potential Role of Mcp-1 in Endothelial Cell Tight Junction ‘Opening’: Signaling via Rho and Rho Kinase. Journal of Cell Science, 116, 4615-4628. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Feldman, E.D., Weinreich, D.M., Carroll, N.M., et al. (2006) Interferon γ-Inducible Protein 10 Selectively Inhibits Proliferation and Induces Apoptosis in Endothelial Cells. Annals of Surgical Oncology, 13, 125-133. [Google Scholar] [CrossRef]
|
|
[48]
|
Xie, H., Zhang, C., Liu, D., et al. (2021) Erythropoietin Protects the Inner Blood-Retinal Barrier by Inhibiting Microglia Phagocytosis via Src/Akt/cofilin Signalling in Experimental Diabetic Retinopathy. Diabetologia, 64, 211-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Jain, A., Saxena, S., Khanna, V.K., Shukla, R.K. and Meyer, C.H. (2013) Status of Serum VEGF and ICAM-1 and Its Association with External Limiting Membrane and Inner Seg-ment-Outer Segment Junction Disruption in Type 2 Diabetes Mellitus. Molecular Vision, 19, 1760-1768.
|
|
[50]
|
Nishikiori, N., Osanai, M., Chiba, H., et al. (2007) Glial Cell-Derived Cytokines Attenuate the Breakdown of Vascular Integrity in Diabetic Retinopathy. Diabetes, 56, 1333-1340. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Rubsam, A., Parikh, S. and Fort, P.E. (2018) Role of Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences, 19, Article No. 942. [Google Scholar] [CrossRef] [PubMed]
|