一类带有p-Laplacian算子的分数阶积分边值问题的多重正解
Multiple Positive Solutions for Fractional In-tegral Boundary Value Problems with p-Laplacian Operators
DOI: 10.12677/AAM.2023.123136, PDF, HTML, XML, 下载: 159  浏览: 242 
作者: 武 瑜, 刘 畅:太原师范学院,数学与统计学院,山西 晋中
关键词: p-Laplacian算子分数阶微分方程边值问题p-Laplacian Operators Fractional Differential Equations Boundary Value Problems
摘要: 本文研究了一类带有p-Laplacian算子的分数阶积分边值问题正解的存在性,通过研究格林函数的性质,运用锥拉伸锥压缩不动点定理以及Leggett-Williams不动点定理,获得了该边值问题至少存在一个正解及三个正解的充分条件,并给出实例验证所得结论。
Abstract: Studying the properties of Green’s function and using the cone stretching cone compression fixed point theorem and the Leggett-Williams fixed point theorem, this paper studies the existence of positive solutions for a class of fractional integral boundary value problems with p-Laplacian oper-ators, obtains sufficient conditions for the existence of at least one positive solution and three posi-tive solutions to the boundary value problems, and gives some examples illustrating the results obtained.
文章引用:武瑜, 刘畅. 一类带有p-Laplacian算子的分数阶积分边值问题的多重正解[J]. 应用数学进展, 2023, 12(3): 1340-1350. https://doi.org/10.12677/AAM.2023.123136

1. 引言

分数阶微积分是由整数阶微积分推广而来的,已广泛应用于控制系统、空气动力学、流体力学等众多工程分支中。因此,分数阶微分方程理论研究近年来得到了快速发展,研究成果非常丰富 [1] [2] [3] [4] [5] 。其中:文 [4] 运用锥理论得到了一类分数阶无穷点边值问题存在一个局部正解以及多个局部正解的充分条件;文 [5] 利用Schauder不动点定理及凹算子不动点定理建立了高阶分数阶多点边值问题正解的存在性及唯一正解的存在性结果。

带有p-Laplacian算子的方程模型能更好地描述多孔介质中的湍流、弹性理论等诸多领域中的实际问题,目前,带有p-Laplacian算子的分数阶微分方程受到众多学者的关注 [6] [7] [8] [9] [10] 。其中:文 [9] 研究了如下带有p-Laplacian算子的分数阶微分方程

{ D 0 + β ( ϕ p ( D 0 + α u ( t ) ) ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = u ( 1 ) = D 0 + α u ( 0 ) = 0 , D 0 + α u ( 1 ) = λ D 0 + α u ( ξ ) ,

其中: D 0 + α D 0 + β 是标准的Riemann-Liouville分数阶导数, 2 < α 3 1 < β 2 0 < ξ < 1 λ 0 ϕ p ( s ) = | s | p 2 s p > 1 ϕ p 1 = ϕ q 1 / p + 1 / q = 1 。作者应用锥上的不动点定理获得了上述边值问题至少存在一个和两个正解的充分条件。文 [10] 研究了如下带有p-Laplacian算子的分数阶积分边值问题

{ D 0 + α ( ϕ p ( D 0 + β x ( t ) ) ) = f ( t , x ( t ) , D 0 + β x ( t ) ) , 0 < t < 1 , D 0 + β x ( t ) = 0 , ( ϕ p ( D 0 + β x ( 0 ) ) ) = 0 , D 0 + γ ( ϕ p ( D 0 + β x ( 1 ) ) ) = I 0 + v ( ϕ p ( D 0 + β x ( η ) ) ) , x ( 0 ) = 0 , D 0 + β 1 x ( 1 ) = I 0 + w g ( ξ , x ( ξ ) ) + k ,

其中: D 0 + α D 0 + β D 0 + γ 是标准的Riemann-Liouville分数阶导数, I 0 + v I 0 + w 是标准的Riemann-Liouville分数阶积分, 0 < γ < 1 < β < 2 < α < 3 v , w > 0 0 < η , ξ < 1 k R f C ( [ 0 , 1 ] × R × R , R ) g C ( [ 0 , 1 ] × R , R ) ϕ p ( s ) = | s | p 2 s p > 1 ϕ p 1 = ϕ q 1 / p + 1 / q = 1 。作者应用上下解方法和单调迭代方法得到了上述边值问题极值解的存在性的充分条件。

受上述文献启发,本文讨论如下带有p-Laplacian算子的分数阶积分边值问题

{ D 0 + α ( ϕ p ( D 0 + β u ( t ) ) ) = λ f ( t , u ( t ) , ( T u ) ( t ) ) , 0 < t < 1 , u ( 0 ) = D 0 + β u ( 0 ) = D 0 + β 1 u ( 1 ) = ( ϕ p ( D 0 + β u ( 0 ) ) ) = 0 , D 0 + γ ( ϕ p ( D 0 + β u ( 1 ) ) ) = I 0 + w ( ϕ p ( D 0 + β u ( η ) ) ) , (1)

其中: D 0 + α D 0 + β D 0 + γ 是Riemann-Liouville分数阶导数, I 0 + w 是Riemann-Liouville分数阶积分, 0 < γ < 1 < β < 2 < α < 3 0 < η < 1 λ , w > 0 f C ( ( 0 , 1 ) × [ 0 , ) × [ 0 , ) , [ 0 , ) ) ( T u ) ( t ) = 0 t K ( t , s ) u ( s ) d s ,且 K C ( D , [ 0 , + ) ) D = { ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] : t s } ϕ p ( s ) = | s | p 2 s p > 1 ϕ p 1 = ϕ q 1 / p + 1 / q = 1 。本文运用锥拉伸锥压缩不动点定理以及Leggett-Williams不动点定理研究该边值问题正解的存在性。

2. 预备知识和引理

定义1 [1] 函数 f : ( 0 , + ) R α > 0 阶Riemann-Liouville分数阶积分定义为

I 0 + α f ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s

其中:等式的右端在 ( 0 , + ) 有定义。

定义2 [1] 连续函数 f : ( 0 , + ) R α > 0 阶Riemann-Liouville分数阶导数定义为

D 0 + α f ( t ) = 1 Γ ( n α ) ( d d t ) n 0 t f ( s ) ( t s ) α n + 1 d s

其中:等式的右端在 ( 0 , + ) 有定义, n = min { m Z : m α } Γ ( ) 为Gamma函数。

引理1 [1] 设 α > 0 u C ( 0 , 1 ) L ( 0 , 1 ) D 0 + α u C ( 0 , 1 ) L ( 0 , 1 ) ,则

I 0 + α D 0 + α u ( t ) = u ( t ) + c 1 t α 1 + c 2 t α 2 + + c n t α n

其中: n = min { m Z : m α } c i R i = 1 , 2 , , n

引理2 若 y ( t ) C [ 0 , 1 ] ,则分数阶微分方程边值问题

{ D 0 + α ( ϕ p ( D 0 + β u ( t ) ) ) = y ( t ) , 0 < t < 1 , u ( 0 ) = D 0 + β u ( 0 ) = D 0 + β 1 u ( 1 ) = ( ϕ p ( D 0 + β u ( 0 ) ) ) = 0 , D 0 + γ ( ϕ p ( D 0 + β u ( 1 ) ) ) = I 0 + w ( ϕ p ( D 0 + β u ( η ) ) ) ,

有唯一解

u ( t ) = 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) y ( τ ) d τ ) d s .

其中:

G ( t , s ) = 1 Γ ( β ) { t β 1 ( t s ) β 1 , 0 s t 1 , t β 1 , 0 t s 1 ,

H ( s , τ ) = 1 Λ { ( s τ ) α 1 [ Γ ( α + w ) Γ ( α γ ) η α + w 1 ] + [ Γ ( α + w ) ( 1 τ ) α γ 1 Γ ( α γ ) ( η τ ) α + w 1 ] s α 1 , 0 τ η , s 1 , [ Γ ( α + w ) ( 1 τ ) α γ 1 Γ ( α γ ) ( η τ ) α + w 1 ] s α 1 , 0 s τ η 1 , ( s τ ) α 1 [ Γ ( α + w ) Γ ( α γ ) η α + w 1 ] + Γ ( α + w ) ( 1 τ ) α γ 1 s α 1 , 0 η τ s 1 , Γ ( α + w ) ( 1 τ ) α γ 1 s α 1 , 0 η , s τ 1 ,

其中: Λ = Γ ( α ) [ Γ ( α + w ) Γ ( α γ ) η α + w 1 ]

证明 由 ϕ p 1 = ϕ q 以及引理1可得, D 0 + α ( ϕ p ( D 0 + β u ( t ) ) ) = y ( t ) 等价于

ϕ p ( D 0 + β u ( t ) ) = I 0 + α y ( t ) + c 1 t α 1 + c 2 t α 2 + c 3 t α 3 c 1 , c 2 , c 3 R

由边界条件 D 0 + β u ( 0 ) = 0 ( ϕ p ( D 0 + β u ( 0 ) ) ) = 0 可得 c 2 = c 3 = 0 。故

ϕ p ( D 0 + β u ( t ) ) = I 0 + α y ( t ) + c 1 t α 1 (2)

对(2)式两边求 γ 阶导数得

D 0 + γ ( ϕ p ( D 0 + β u ( t ) ) ) = 1 Γ ( α γ ) 0 t ( t τ ) α γ 1 y ( τ ) d τ + c 1 Γ ( α ) Γ ( α γ ) t α γ 1

对(2)式两边求w阶积分得

I 0 + w ( ϕ p ( D 0 + β u ( t ) ) ) = 1 Γ ( α + w ) 0 t ( t τ ) α + w 1 y ( τ ) d τ + c 1 Γ ( α ) Γ ( α + w ) t α + w 1

由边界条件 D 0 + γ ( ϕ p ( D 0 + β u ( 1 ) ) ) = I 0 + w ( ϕ p ( D 0 + β u ( η ) ) ) 可得

c 1 = Γ ( α + w ) 0 1 ( 1 τ ) α γ 1 y ( τ ) d τ Γ ( α γ ) 0 η ( η τ ) α + w 1 y ( τ ) d τ Γ ( α ) [ Γ ( α + w ) Γ ( α γ ) η α + w 1 ] (3)

将(3)式代入(2)式可得

ϕ p ( D 0 + β u ( t ) ) = 1 Γ ( α ) 0 t ( t τ ) α 1 y ( τ ) d τ + c 1 t α 1 = 0 1 H ( t , τ ) y ( τ ) d τ (4)

ϕ q ( 0 1 H ( t , τ ) y ( τ ) d τ ) = h ( t ) ,可得 D 0 + β u ( t ) = h ( t ) ,再由引理1可得

u ( t ) = I 0 + β h ( t ) + d 1 t β 1 + d 2 t β 2 = 1 Γ ( β ) 0 t ( t s ) β 1 h ( s ) d s + d 1 t β 1 + d 2 t β 2 , d 1 , d 2 R . (5)

由边界条件 u ( 0 ) = 0 d 2 = 0 。再由定义2对(5)式两边求 β 1 阶导数可得

D 0 + β 1 u ( t ) = D 0 + β 1 I 0 + β h ( t ) + d 1 D 0 + β 1 t β 1 = 0 t h ( s ) d s + d 1 Γ ( β ) .

由边界条件 D 0 + β 1 u ( 1 ) = 0

d 1 = 0 1 h ( s ) d s Γ ( β )

于是边值问题有唯一解

u ( t ) = 1 Γ ( β ) 0 t ( t s ) β 1 h ( s ) d s + d 1 t β 1 = 1 Γ ( β ) 0 t ( t s ) β 1 h ( s ) d s + 1 Γ ( β ) 0 1 t β 1 h ( s ) d s = 0 1 G ( t , s ) h ( s ) d s . (6)

证毕。

引理3 函数 G ( t , s ) H ( t , s ) 满足如下性质:

1) 对任意的 t , s [ 0 , 1 ] G ( t , s ) 0 H ( t , s ) 0

2) max t [ 0 , 1 ] G ( t , s ) = G ( s , s ) = 1 Γ ( β ) s β 1 1 Γ ( β ) s [ 0 , 1 ]

3) min t [ 1 / 4 , 3 / 4 ] G ( t , s ) = : m ( s ) = 1 Γ ( β ) { ( 3 4 ) β 1 ( 3 4 s ) β 1 , s [ 0 , 1 4 ] ; min { ( 3 4 ) β 1 ( 3 4 s ) β 1 , 1 4 β 1 } , s ( 1 4 , 3 4 ) ; 1 4 β 1 , s [ 3 4 , 1 ] .

证明 1) 由函数 G ( t , s ) 的表达式易知,对任意的 t , s [ 0 , 1 ] G ( t , s ) 0

对于函数 H ( t , s ) ,注意到 α γ 1 < α + w 1 以及 1 < α γ < 2 < α + w ,则有

Γ ( α γ ) < 1 < Γ ( α + w )

( 1 s ) α γ 1 > ( η s ) α γ 1 > ( η s ) α + w 1

进而有 Γ ( α + w ) Γ ( α γ ) η α + w 1 > Γ ( α + w ) Γ ( α γ ) > 0 ,以及

Γ ( α + w ) ( 1 s ) α γ 1 Γ ( α γ ) ( η s ) α + w 1 [ Γ ( α + w ) Γ ( α γ ) ] ( η s ) α + w 1 > 0

进而容易得到对任意的 t , s [ 0 , 1 ] H ( t , s ) 0

2) 对于函数 G ( t , s ) ,通过简单计算,可得当 0 < t s 时,

t G ( t , s ) = 1 Γ ( β ) ( β 1 ) t β 2 > 0

0 s < t 时,

t G ( t , s ) = 1 Γ ( β ) ( β 1 ) [ t β 2 ( t s ) β 2 ] < 0

G ( t , s ) t s 上是关于t的增函数,在 s < t 上是关于t的减函数。进而有

max t [ 0 , 1 ] G ( t , s ) = G ( s , s ) = 1 Γ ( β ) s β 1 1 Γ ( β ) , s [ 0 , 1 ]

3) 令

g 1 ( t , s ) = t β 1 ( t s ) β 1 Γ ( β ) , g 2 ( t , s ) = t β 1 Γ ( β )

可得

min t [ 1 / 4 , 3 / 4 ] G ( t , s ) = { g 1 ( 3 4 , s ) , s [ 0 , 1 4 ] ; min { g 1 ( 3 4 , s ) , g 2 ( 1 4 , s ) } , s ( 1 4 , 3 4 ) ; g 2 ( 1 4 , s ) , s [ 3 4 , 1 ] ; = 1 Γ ( β ) { ( 3 4 ) β 1 ( 3 4 s ) β 1 , s [ 0 , 1 4 ] ; min { ( 3 4 ) β 1 ( 3 4 s ) β 1 , 1 4 β 1 } , s ( 1 4 , 3 4 ) ; 1 4 β 1 , s [ 3 4 , 1 ] ; = : m ( s ) ,

证毕。

设E是实Banach空间, θ 为E中的零元素。P为E中的非空凸闭子集,若

x P , λ 0 λ x P ; x P , x P x = θ ,

则称P为E中的锥。

引理4 [3] 设E是一个Banach空间,P为E中的一个锥, Ω 1 , Ω 2 是E中的两个有界开集,并且 Ω 1 Ω 2 。假设 T : P ( Ω 2 \ Ω 1 ) P 是全连续算子,若下列条件二者成立其一:

(K1) T x x x P Ω 1 T x x x P Ω 2

(K2) T x x x P Ω 1 T x x x P Ω 2

那么T在 P ( Ω 2 \ Ω 1 ) 中至少有一个不动点。

定义3 [3] 设P为Banach空间E中的锥。若映射 ψ : P [ 0 , ) 连续且 x , y P η [ 0 , 1 ] ,有 ψ ( η x + ( 1 η ) y ) η ψ ( x ) + ( 1 η ) ψ ( y ) ,则称 ψ 是P上非负连续凹泛函。

引理5 [3] 设常数 0 < a < b < d c T : P c ¯ P c ¯ 是全连续算子, ψ 是P上的一个非负连续凹泛函,且对任意的 x P c ,有 ψ ( x ) x 。又设

(L1) { x P ( ψ , b , d ) | ψ ( x ) > b } 且对 x P ( ψ , b , d ) ,有 ψ ( T x ) > b

(L2) 当 x P a ¯ 时, T x < a

(L3) 当 x P ( ψ , b , c ) T x > d 时, ψ ( T x ) > b

则算子T至少有三个不动点 x 1 , x 2 , x 3 ,满足 x 1 < a b < ψ ( x 2 ) x 3 > a ψ ( x 3 ) < b

3. 主要结果

E = C [ 0 , 1 ] 。对任意的 u E ,定义其范数为

u = max t [ 0 , 1 ] | u ( t ) |

容易证明E为Banach空间。再令

P = { u E | u ( t ) 0 , t [ 0 , 1 ] }

则P是E中的锥。定义泛函

ψ ( u ) = min t [ 1 / 4 , 3 / 4 ] u ( t )

则它是P中的非负连续凹泛函。定义算子A如下:对任意的 u P

( A u ) ( t ) = 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s , t [ 0 , 1 ] (7)

引理6 算子 A : P P 是全连续算子。

证明 根据引理3的1)以及函数f的非负连续性可得,对任意的 u P

( A u ) ( t ) = 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s 0 , t [ 0 , 1 ]

所以 A ( P ) P 。以下证明A为紧算子。设 Ω 是锥P中的有界集,即存在 R 1 > 0 ,使得

x R 1 , x Ω

W R 1 = sup { f ( t , u 1 , u 2 ) : ( t , u 1 , u 2 ) ( [ 0 , 1 ] × [ 0 , R 1 ] × [ 0 , k * R 1 ] ) } ,其中

k * = sup t [ 0 , 1 ] 0 t K ( t , s ) d s

进而对任意的 u Ω ,由引理3的2)得

| ( A u ) ( t ) | = | 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 1 Γ ( β ) 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s ϕ q ( λ W R 1 ) Γ ( β ) 0 1 ϕ q ( 0 1 H ( s , τ ) d τ ) d s ,

由此可知 A ( Ω ) 为E中一致有界的子集合。

再证 A ( Ω ) 为E中等度连续的子集合。对任意的 0 t 1 < t 2 1 u Ω

| ( A u ) ( t 2 ) ( A u ) ( t 1 ) | 0 1 | G ( t 2 , s ) G ( t 1 , s ) | ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s ϕ q ( λ W R 1 ) 0 1 | G ( t 2 , s ) G ( t 1 , s ) | ϕ q ( 0 1 H ( s , τ ) d τ ) d s ,

G ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] 上连续,从而一致连续,故 A ( Ω ) 为E中等度连续的子集合。进而集合 A ( Ω ) 是一致有界且等度连续的,根据Arzela-Ascoli定理可知 A ( Ω ) 是E中的相对紧集。

最后证明 A : P P 是连续算子。设 { u n } Ω u Ω ,当 n + 时,有 u n u 0 ,故存在常数 R 0 > 1 ,使得 u < R 0 u n < R 0 n = 1 , 2 , 。于是对 s [ 0 , 1 ]

| ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u n ( τ ) , ( T u n ) ( τ ) ) d τ ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) | 0 , n + .

| 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u n ( τ ) , ( T u n ) ( τ ) ) d τ ) d s 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 2 ϕ q ( λ W R 0 ) 0 1 ϕ q ( 0 1 H ( s , τ ) d τ ) d s < + ,

其中 W R 0 = sup { f ( t , u 1 , u 2 ) : ( t , u 1 , u 2 ) ( [ 0 , 1 ] × [ 0 , R 0 ] × [ 0 , k * R 0 ] ) } 。由Lebesgue控制收敛定理可知,

| 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u n ( τ ) , ( T u n ) ( τ ) ) d τ ) d s 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 0 , n + .

进而根据引理3的2)得

| ( A u n ) ( t ) ( A u ) ( t ) | = | 0 1 G ( t , s ) [ ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u n ( τ ) , ( T u n ) ( τ ) ) d τ ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) ] d s | 1 Γ ( β ) | 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u n ( τ ) , ( T u n ) ( τ ) ) d τ ) d s 0 1 ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 0 , n + .

A : P P 是连续算子。证毕。

为了方便叙述,记:

M = [ 1 Γ ( β ) 0 1 ϕ q ( λ 0 1 H ( s , τ ) d τ ) d s ] 1

N = [ 0 1 m ( s ) ϕ q ( λ 1 / 4 3 / 4 H ( s , τ ) d τ ) d s ] 1

定理1 若存在两个常数 r 2 > r 1 > 0 ,使得

(H1) ( t , u , v ) [ 1 / 4 , 3 / 4 ] × [ 0 , r 1 ] × [ 0 , k * r 1 ] f ( t , u , v ) ( N r 1 ) p 1

(H2) ( t , u , v ) [ 0 , 1 ] × [ 0 , r 2 ] × [ 0 , k * r 2 ] f ( t , u , v ) ( M r 2 ) p 1

则边值问题(1)至少有一个正解u,使得 r 1 u r 2

证明 令 Ω 1 = { u P | u < r 1 } ,当 u Ω 1 时,有 0 u ( t ) r 1 0 ( T u ) ( t ) k * r 1 t [ 0 , 1 ] 。由(H1)及引理3的3)可得

( A u ) ( t ) = 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s 0 1 G ( t , s ) ϕ q ( 1 / 4 3 / 4 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s 0 1 min t [ 1 / 4 , 3 / 4 ] G ( t , s ) ϕ q ( 1 / 4 3 / 4 H ( s , τ ) λ ϕ p ( N r 1 ) d τ ) d s = N r 1 0 1 m ( s ) ϕ q ( λ 1 / 4 3 / 4 H ( s , τ ) d τ ) d s = r 1 = u , t [ 1 / 4 , 3 / 4 ] ,

因而当 u Ω 1 时,有 A u u

另一方面,令 Ω 2 = { u P | u < r 2 } ,当 u Ω 2 时,有 0 u ( t ) r 2 0 ( T u ) ( t ) k * r 2 t [ 0 , 1 ] 。由(H2)及引理3的2)可得

A u = max t [ 0 , 1 ] | ( A u ) ( t ) | = max t [ 0 , 1 ] | 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 1 Γ ( β ) 0 1 ϕ q ( 0 1 H ( s , τ ) λ ϕ p ( M r 2 ) d τ ) d s = M r 2 Γ ( β ) 0 1 ϕ q ( λ 0 1 H ( s , τ ) d τ ) d s = r 2 = u , t [ 0 , 1 ] ,

因而当 u Ω 2 时,有 A u u

由引理4可知算子A至少有一个不动点u,即边值问题(1)至少有一个正解且满足 r 1 u r 2 。证毕。

定理2 假设存在正常数且满足 0 < a < b < c ,使得:

(H3) 当 ( t , u , v ) [ 0 , 1 ] × [ 0 , a ] × [ 0 , k * a ] 时, f ( t , u , v ) ( M a ) p 1

(H4) 当 ( t , u , v ) [ 1 / 4 , 3 / 4 ] × [ b , c ] × [ 0 , k * c ] 时, f ( t , u , v ) ( N b ) p 1

(H5) 当 ( t , u , v ) [ 0 , 1 ] × [ 0 , c ] × [ 0 , k * c ] 时, f ( t , u , v ) ( M c ) p 1

则边值问题(1)至少有三个正解 u 1 , u 2 , u 3 ,且满足

max t [ 0 , 1 ] | u 1 ( t ) | < a b < min t [ 1 / 4 , 3 / 4 ] | u 2 ( t ) | a < max t [ 0 , 1 ] | u 3 ( t ) | min t [ 1 / 4 , 3 / 4 ] | u 3 ( t ) | < b

证明 若 u P c ¯ ,则 u c ,由假设(H5)可得

A u = max t [ 0 , 1 ] | ( A u ) ( t ) | = max t [ 0 , 1 ] | 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 1 Γ ( β ) 0 1 ϕ q ( 0 1 H ( s , τ ) λ ϕ p ( M c ) d τ ) d s = M c Γ ( β ) 0 1 ϕ q ( λ 0 1 H ( s , τ ) d τ ) d s = c ,

从而说明对任意的 u P c ¯ A u c ,故有 A ( P c ¯ ) P c ¯ 。同理,若 u P a ¯ ,由假设(H3)可得 A u a ,所以引理5中的条件(L2)成立。

u ( t ) = b + c 2 0 t 1 ,则 u ( t ) = b + c 2 < c ψ ( u ( t ) ) = min t [ 1 / 4 , 3 / 4 ] b + c 2 > b ,因而 u ( t ) = b + c 2 P ( ψ , b , c )

{ u P ( ψ , b , c ) | ψ ( u ) > b } 。若 u P ( ψ , b , c ) ,则 b u ( t ) c ,从而由假设(H4)可得

ψ ( A u ) = min t [ 1 / 4 , 3 / 4 ] | ( T u ) ( t ) | = min t [ 1 / 4 , 3 / 4 ] | 0 1 G ( t , s ) ϕ q ( 0 1 H ( s , τ ) λ f ( τ , u ( τ ) , ( T u ) ( τ ) ) d τ ) d s | 0 1 m ( s ) ϕ q ( 1 / 4 3 / 4 H ( s , τ ) λ ϕ p ( N b ) d τ ) d s = N b 0 1 m ( s ) ϕ q ( λ 1 / 4 3 / 4 H ( s , τ ) d τ ) d s = b ,

即对任意的 u P ( ψ , b , c ) ψ ( A u ) > b 。所以引理5中条件(L1)成立。

如果 d = c ,那么引理5的条件(L1)可以推出条件(L3)。

综上,由引理5可知,边值问题(1)至少有三个正解 u 1 , u 2 , u 3 ,且满足

max t [ 0 , 1 ] | u 1 ( t ) | < a b < min t [ 1 / 4 , 3 / 4 ] | u 2 ( t ) | a < max t [ 0 , 1 ] | u 3 ( t ) | min t [ 1 / 4 , 3 / 4 ] | u 3 ( t ) | < b

4. 例子

例1 考虑如下带有p-Laplacian算子的分数阶积分边值问题

{ D 0 + 11 / 4 ( ϕ 2 ( D 0 + 4 / 3 u ( t ) ) ) = t + u ( t ) + e | 0 t t 2 ( 1 s ) 2 u ( s ) d s | , 0 < t < 1 , u ( 0 ) = D 0 + 4 / 3 u ( 0 ) = D 0 + 1 / 3 u ( 1 ) = ( ϕ 2 ( D 0 + 4 / 3 u ( 0 ) ) ) = 0 , D 0 + 1 / 2 ( ϕ 2 ( D 0 + 4 / 3 u ( 1 ) ) ) = I 0 + 5 / 2 ( ϕ 2 ( D 0 + 4 / 3 u ( 3 / 4 ) ) ) , (8)

此即在边值问题(1)中, α = 11 / 4 β = 4 / 3 γ = 1 / 2 w = 5 / 2 η = 3 / 4 λ = 1 p = 2

( T u ) ( t ) = 0 t K ( t , s ) u ( s ) d s = 0 t t 2 ( 1 s ) 2 u ( s ) d s f ( t , u , v ) = t + u + e | v | t [ 0 , 1 ] u , v 0

通过计算可得 k * = sup t [ 0 , 1 ] 0 t K ( t , s ) d s = 1 3 q = 2 M 21.8691 N 49.2083 。选取 r 1 = 0.1 r 2 = 0.4

f ( t , u , v ) = t + u + e | v | + 5 > 5 N r 1 4.9208 ( t , u , v ) [ 1 4 , 3 4 ] × [ 0 , 0.1 ] × [ 0 , 1 30 )

f ( t , u , v ) = t + u + e | v | + 4 6.4 < M r 2 8.7476 ( t , u , v ) [ 0 , 1 ] × [ 0 , 0.4 ] × [ 0 , 2 15 )

于是定理1的条件都满足,所以边值问题(8)至少存在一个正解u,使得 0.1 u 0.4

例2 考虑如下带有p-Laplacian算子的分数阶积分边值问题

{ D 0 + 11 / 4 ( ϕ 2 ( D 0 + 4 / 3 u ( t ) ) ) = f ( t , u ( t ) , ( T u ) ( t ) ) , 0 < t < 1 , u ( 0 ) = D 0 + 4 / 3 u ( 0 ) = D 0 + 1 / 3 u ( 1 ) = ( ϕ 2 ( D 0 + 4 / 3 u ( 0 ) ) ) = 0 , D 0 + 1 / 2 ( ϕ 2 ( D 0 + 4 / 3 u ( 1 ) ) ) = I 0 + 5 / 2 ( ϕ 2 ( D 0 + 4 / 3 u ( 3 / 4 ) ) ) , (9)

此即在边值问题(1)中, α = 11 / 4 β = 4 / 3 γ = 1 / 2 w = 5 / 2 η = 3 / 4 λ = 1 p = 2 ( T u ) ( t ) = 0 t K ( t , s ) u ( s ) d s = 0 t t 2 ( 1 s ) 2 u ( s ) d s

f ( t , u , v ) = { t + e | v | + 45 u 3 , 0 u 1 , t + e | v | + 55 u 10 , 1 < u 2 , t + e | v | + 10 2 u + 80 , u > 2 ,

通过计算可得 k * = sup t [ 0 , 1 ] 0 t K ( t , s ) d s = 1 3 q = 2 M 21.8691 N 49.2083 。选取 a = 1 2 b = 2 c = 8

f ( t , u , v ) = t + e | v | + 45 u 3 6.375 < M a 10.9346 , ( t , u , v ) [ 0 , 1 ] × [ 0 , 1 2 ] × [ 0 , 1 6 ]

f ( t , u , v ) = t + e | v | + 55 u 10 > 100 > N b 98.4166 , ( t , u , v ) [ 1 4 , 3 4 ] × [ 2 , 8 ] × [ 0 , 8 3 ]

f ( t , u , v ) = t + e | v | + 10 2 u + 80 122 < M c 174.9528 , ( t , u , v ) [ 0 , 1 ] × [ 0 , 8 ] × [ 0 , 8 3 ]

于是定理2的条件都满足,所以边值问题(9)至少有三个正解 u 1 , u 2 , u 3 ,且满足

max 0 t 1 | u 1 ( t ) | < 1 2 , 2 < min 1 / 4 t 3 / 4 | u 2 ( t ) | , 1 2 < max 0 t 1 | u 3 ( t ) | , min 1 / 4 t 3 / 4 | u 3 ( t ) | < 2 .

NOTES

*通讯作者。

参考文献

[1] 白占兵. 分数阶微分方程边值问题理论及其应用[M]. 北京: 中国科学技术出版社, 2013.
[2] Mena, J.C., Sauco, J.H. and Kishin, S. (2021) Existence and Uniqueness of Positive Solutions for a Class of Singular Fractional Differential Equation with Infinite-Point Boundary Value Conditions. The Royal Academy of Sciences, 115, 1-12.
https://doi.org/10.1007/s13398-020-00994-1
[3] 郭大均. 非线性泛函分析[M]. 第三版. 北京: 中国科学技术出版社, 2013.
[4] Zhang. X.Q. (2015) Positive Solutions for a Class of Singular Fractional Differential Equation with Infinite-Point Boundary Value Conditions. Applied Mathematics Letters, 39, 22-27.
https://doi.org/10.1016/j.aml.2014.08.008
[5] Zhai, C.B. and Wang, L. (2017) Some Existence, Uniqueness Re-sults on Positive Solutions for a Fractional Differential Equation with Infinite-Point Boundary Conditions. Nonlinear Analysis: Modelling and Control, 22, 566-577.
https://doi.org/10.15388/NA.2017.4.10
[6] Wang, Y., Liu, L.S. and Wu, Y.H. (2015) Extremal Solutions for p-Laplacian Fractional Integro-Differential Equation with Integral Conditions on Infinite Intervals via Iterative Computa-tion. Advances in Difference Equations, 24, 1-14.
https://doi.org/10.1186/s13662-015-0358-1
[7] Wang, W.X., Duan, J.Y. and Guo, X.Z. (2022) Successive Itera-tion and Positive Solutions for Fractional Integral Boundary Value Problem with p-Laplacian Operator. Mathematica Ap-plicata, 35, 147-155.
[8] Tian, Y.S., Bai, Z.B. and Sun, S.J. (2019) Positive Solutions for a Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator. Advances in Difference Equations, 2019, 1-14.
https://doi.org/10.1186/s13662-019-2280-4
[9] 田元生, 李小平, 葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2018, 41(4): 529-539.
[10] He, Y. (2018) Extremal Solutions for p-Laplacian Fractional Differential Systems Involving the Riemann-Liouville Integral Boundary Conditions. Advances in Difference Equations, 2018, 1-11.
https://doi.org/10.1186/s13662-017-1443-4