|
[1]
|
Vincent, J.L., Martinez, E.O. and Silva, E. (2011) Evolving Concepts in Sepsis Definitions. Critical Care Nursing Clin-ics of North America, 23, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Liu, A.C., Patel, K., Vunikili, R.D., et al. (2020) Sepsis in the Era of Data-Driven Medicine: Personalizing Risks, Diagnoses, Treatments and Progno-ses. Briefings in Bioinformatics, 21, 1182-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cecconi, M., Evans, L., Levy, M., et al. (2018) Sepsis and Septic Shock. The Lancet, 392, 75-87. [Google Scholar] [CrossRef]
|
|
[4]
|
Pant, A., Mackraj, I. and Govender, T. (2021) Advances in Sepsis Diagnosis and Management: A Paradigm Shift towards Nanotechnology. Journal of Biomedical Science, 28, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Berry, M., Patel, B.V. and Brett, S.J. (2017) New Consensus Definitions for Sepsis and Septic Shock: Implications for Treatment Strategies and Drug Development? Drugs, 77, 353-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tidswell, R., Inada-Kim, M. and Singer, M. (2021) Sepsis: The Importance of an Accurate Final Diagnosis. The Lancet Respiratory Medicine, 9, 17-18. [Google Scholar] [CrossRef]
|
|
[7]
|
Lippi, G. (2019) Sepsis Biomarkers: Past, Present and Future. Clinical Chemistry and Laboratory Medicine, 57, 1281- 1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Pierrakos, C. and Vincent, J.L. (2010) Sepsis Biomarkers: A Review. Critical Care, 14, R15. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fisher, J. and Linder, A. (2017) Heparin-Binding Protein: A Key Player in the Pathophysiology of Organ Dysfunction in Sepsis. Journal of Internal Medicine, 281, 562-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lin, G.C., Kung, E., Smajlhodzic, M., et al. (2021) Directed Transport of CRP across in Vitro Models of the Blood- Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics, 13, 256. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tang, Y., Ling, N., Li, S., et al. (2021) A Panel of Urine-Derived Biomarkers to Identify Sepsis and Distinguish It from Systemic Inflammatory Response Syndrome. Sci-entific Reports, 11, 20794. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Raeven, P., Zipperle, J. and Drechsler, S. (2018) Extracellular Vesicles as Markers and Mediators in Sepsis. Theranostics, 8, 3348-3365. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cao, X.E., Ongagna-Yhombi, S.Y., Wang, R., et al. (2022) A Diagnostic Platform for Rapid, Simultaneous Quantification of Procalcitonin and C-Reactive Protein in Human Serum. EBioMedicine, 76, 103867. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lee, E.H., Lee, K.H., Song, Y.G., et al. (2022) Discrepancy of C-Reactive Protein, Procalcitonin and Interleukin-6 at Hospitalization: Infection in Patients with Normal C-Reactive Pro-tein, Procalcitonin and High Interleukin-6 Values. Journal of Clinical Medicine, 11, 7324. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rajab, I.M., Hart, P.C. and Potempa, L.A. (2020) How C-Reactive Pro-tein Structural Isoforms with Distinctive Bioactivities Affect Disease Progression. Frontiers in Immunology, 11, 2126. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Castelli, G.P., Pognani, C., Meisner, M., et al. (2004) Procalcitonin and C-Reactive Protein during Systemic Inflammatory Response Syndrome, Sepsis and Organ Dysfunction. Critical Care, 8, R234-R242. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hofer, N., Zacharias, E., Müller, W., et al. (2012) An Update on the Use of C-Reactive Protein in Early-Onset Neonatal Sepsis: Current Insights and New Tasks. Neonatology, 102, 25-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mac Giollabhui, N., Ellman, L.M., Coe, C.L., et al. (2020) To Exclude or Not to Exclude: Considerations and Recommendations for C-Reactive Protein Values Higher than 10 mg/L. Brain, Be-havior, and Immunity, 87, 898-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ruan, L., Chen, G.Y., Liu, Z., et al. (2018) The Combination of Procalcitonin and C-Reactive Protein or Presepsin Alone Improves the Accuracy of Diagnosis of Neonatal Sepsis: A Meta-Analysis and Systematic Review. Critical Care, 22, 316. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kyriazopoulou, E., Poulakou, G. and Giamarellos-Bourboulis, E.J. (2021) Biomarkers in Sepsis: Can They Help Improve Patient Outcome? Current Opinion in Infectious Diseases, 34, 126-134. [Google Scholar] [CrossRef]
|
|
[21]
|
Kyriazopoulou, E., Liaskou-Antoniou, L., Adamis, G., et al. (2021) Procalcitonin to Reduce Long-Term Infection-Associated Adverse Events in Sepsis. A Randomized Trial. Ameri-can Journal of Respiratory and Critical Care Medicine, 203, 202-210. [Google Scholar] [CrossRef]
|
|
[22]
|
Wacker, C., Prkno, A., Brunkhorst, F.M., et al. (2013) Procal-citonin as a Diagnostic Marker for Sepsis: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, 13, 426-435. [Google Scholar] [CrossRef]
|
|
[23]
|
Sridharan, P. and Chamberlain, R.S. (2013) The Efficacy of Procalcitonin as a Biomarker in the Management of Sepsis: Slaying Dragons or Tilting at Windmills? Surgical Infections (Larchmt), 14, 489-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rashwan, N.I., Hassan, M.H., Mohey El-Deen, Z.M., et al. (2019) Va-lidity of Biomarkers in Screening for Neonatal Sepsis—A Single Center-Hospital Based Study. Pediatrics & Neonatolo-gy, 60, 149-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Stocker, M., Van Herk, W., El Helou, S., et al. (2021) C-Reactive Protein, Procalcitonin, and White Blood Count to Rule Out Neonatal Early-Onset Sepsis within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study. Clinical Infectious Diseases, 73, e383-e390. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mantovani, A., Garlanda, C., Doni, A., et al. (2008) Pentraxins in Innate Immunity: From C-Reactive Protein to the Long Pentraxin PTX3. Journal of Clinical Immunology, 28, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hamed, S., Behnes, M., Pauly, D., et al. (2017) Diagnostic Value of Pentraxin-3 in Patients with Sepsis and Septic Shock in Accordance with Latest Sepsis-3 Definitions. BMC Infectious Diseases, 17, 554. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lee, Y.T., Gong, M., Chau, A., et al. (2018) Pentraxin-3 as a Marker of Sepsis Severity and Predictor of Mortality Outcomes: A Systematic Review and Meta-Analysis. Journal of Infection, 76, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, C., Liang, G., Shen, J., et al. (2021) Long Non-Coding RNAs as Biomarkers and Therapeutic Targets in Sepsis. Frontiers in Immunology, 12, Article ID: 722004. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hashemian, S.M., Pourhanifeh, M.H., Fadaei, S., et al. (2020) Non-Coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Molecular Therapy—Nucleic Acids, 21, 51-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ghafouri-Fard, S., Khoshbakht, T., Hussen, B.M., et al. (2021) Regulatory Role of Non-Coding RNAs on Immune Responses during Sepsis. Frontiers in Immunology, 12, Ar-ticle ID: 798713. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, W., Yang, N., Wen, R., et al. (2021) Long Noncoding RNA: Regulatory Mechanisms and Therapeutic Potential in Sepsis. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 563126. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Beltrán-García, J., Osca-Verdegal, R., Nácher-Sendra, E., et al. (2021) Role of Non-Coding RNAs as Biomarkers of Deleterious Cardiovascular Effects in Sepsis. Progress in Cardio-vascular Diseases, 68, 70-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, W., Geng, F. and Yu, L. (2020) Long Non-Coding RNA MALAT1/microRNA 125a Axis Presents Excellent Value in Discriminating Sepsis Patients and Exhibits Positive Asso-ciation with General Disease Severity, Organ Injury, Inflammation Level, and Mortality in Sepsis Patients. Journal of Clinical Laboratory Analysis, 34, e23222. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, J., Zhang, Y., Zhang, D., et al. (2021) The Role of Long Non-Coding RNAs in Sepsis-Induced Cardiac Dysfunction. Frontiers in Cardiovascular Medicine, 8, Article ID: 684348. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Piva, E., Zuin, J., Pelloso, M., et al. (2021) Monocyte Distribution width (MDW) Parameter as a Sepsis Indicator in Intensive Care Units. Clinical Chemistry and Laboratory Medicine, 59, 1307-1314. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hausfater, P., Robert, B.N., Morales, I.C., et al. (2021) Monocyte Distribution width (MDW) Performance as an Early Sepsis Indicator in the Emergency Department: Comparison with CRP and Procalcitonin in a Multicenter International European Prospective Study. Critical Care, 25, 227. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Crouser, E.D., Parrillo, J.E., Martin, G.S., et al. (2020) Mono-cyte Distribution Width Enhances Early Sepsis Detection in the Emergency Department beyond SIRS and qSOFA. Journal of Intensive Care, 8, 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jo, S.J., Kim, S.W., Choi, J.H., et al. (2022) Monocyte Distribu-tion Width (MDW) as a Useful Indicator for Early Screening of Sepsis and Discriminating False Positive Blood Cultures. PLOS ONE, 17, e0279374. [Google Scholar] [CrossRef] [PubMed]
|