|
[1]
|
Lauder, J.M. and Bloom, F.E. (1974) Ontogeny of Monoamine Neurons in the Locus Coeruleus, Raphe Nuclei and Substantia Nigra of the Rat. I. Cell Differentiation. Journal of Comparative Neurology, 155, 469-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Swanson, L.W. (1982) The Projections of the Ventral Tegmental Area and Adjacent Regions: A Combined Fluorescent Retrograde Tracer and Immunofluorescence Study in the Rat. Brain Research Bulletin, 9, 321-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Menegas, W., et al. (2015) Dopamine Neurons Projecting to the Posterior Striatum Form an Anatomically Distinct Subclass. Elife, 4, e10032. [Google Scholar] [CrossRef]
|
|
[4]
|
Sesack, S.R. and Grace, A.A. (2010) Cortico-Basal Ganglia Reward Network: Microcircuitry. Neuropsychopharmacology, 35, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ikemoto, S. (2007) Dopamine Reward Circuitry: Two Projection Systems from the Ventral Midbrain to the Nucleus Accumbens-Olfactory Tubercle Complex. Brain Research Reviews, 56, 27-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lammel, S., et al. (2008) Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System. Neuron, 57, 760-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Szabo, J. (1980) Organization of the Ascending Striatal Afferents in Monkeys. Journal of Comparative Neurology, 189, 307-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lynd-Balta, E. and Haber, S.N. (1994) The Organization of Midbrain Projections to the Striatum in the Primate: Sensorimotor-Related Striatum versus Ventral Striatum. Neuroscience, 59, 625-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Grace, A.A. and Onn, S.P. (1989) Morphology and Electrophysiological Properties of Immunocytochemically Identified Rat Dopamine Neurons Recorded in Vitro. Journal of Neuroscience, 9, 3463-3481. [Google Scholar] [CrossRef]
|
|
[10]
|
Grace, A.A. and Bunney, B.S. (1985) Opposing Effects of Striatonigral Feedback Pathways on Midbrain Dopamine Cell Activity. Brain Research, 333, 271-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Grace, A.A. and Bunney, B.S. (1984) The Control of Firing Pattern in Nigral Dopamine Neurons: Single Spike Firing. Journal of Neuroscience, 4, 2866-2876. [Google Scholar] [CrossRef]
|
|
[12]
|
Floresco, S.B., et al. (2003) Afferent Modulation of Dopamine Neuron Firing Differentially Regulates Tonic and Phasic Dopamine Transmission. Nature Neuroscience, 6, 968-973. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cohen, J.Y., et al. (2012) Neuron-Type-Specific Signals for Reward and Punishment in the Ventral Tegmental Area. Nature, 482, 85-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Schultz, W. (2016) Reward Functions of the Basal Ganglia. Journal of Neural Transmission, 123, 679-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wise, R.A. and Robble, M.A. (2020) Dopamine and Addiction. Annual Review of Psychology, 71, 79-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Montague, P.R., Dayan, P. and Sejnowski, T.J. (1996) A Framework for Mesencephalic Dopamine Systems Based on Predictive Hebbian Learning. Journal of Neuroscience, 16, 1936-1947. [Google Scholar] [CrossRef]
|
|
[17]
|
Steinberg, E.E., et al. (2013) A Causal Link between Prediction Errors, Dopamine Neurons and Learning. Nature Neuroscience, 16, 966-973. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hamid, A.A., et al. (2016) Mesolimbic Dopamine Signals the Value of Work. Nature Neuroscience, 19, 117-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Howes, O.D., et al. (2013) Midbrain Dopamine Function in Schizophrenia and Depression: A Post-Mortem and Positron Emission Tomographic Imaging Study. Brain, 136, 3242-3251. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Egerton, A., et al. (2013) Presynaptic Striatal Dopamine Dysfunction in People at Ultra-High Risk for Psychosis: Findings in a Second Cohort. Biological Psychiatry, 74, 106-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Silbersweig, D.A., et al. (1995) A Functional Neuroanatomy of Hallucinations in Schizophrenia. Nature, 378, 176-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Stone, J.M., et al. (2010) Altered Relationship between Hippocampal Glutamate Levels and Striatal Dopamine Function in Subjects at Ultra High Risk of Psychosis. Biological Psychiatry, 68, 599-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Eshel, N., et al. (2016) Dopamine Neurons Share Common Re-sponse Function for Reward Prediction Error. Nature Neuroscience, 19, 479-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pandit, R., et al. (2016) Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology, 41, 2241-2251. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sarchiapone, M., et al. (2006) Dopamine Transporter Binding in Depressed Patients with Anhedonia. Psychiatry Research: Neuroimaging, 147, 243-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mayberg, H.S., et al. (2005) Deep Brain Stimulation for Treatment-Resistant Depression. Neuron, 45, 651-660. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Leppänen, J.M. (2006) Emotional Information Processing in Mood Disorders: A Review of Behavioral and Neuroimaging Findings. Current Opinion in Psychiatry, 19, 34-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kalia, M. (2005) Neurobiological Basis of Depression: An Update. Metabolism, 54, 24-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chang, C.H. and Grace, A.A. (2014) Amygdala-Ventral Pallidum Pathway Decreases Dopamine Activity after Chronic Mild Stress in Rats. Biological Psychiatry, 76, 223-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Valenti, O., Gill, K.M. and Grace, A.A. (2012) Different Stressors Produce Excitation or Inhibition of Mesolimbic Dopamine Neuron Activity: Response Alteration by Stress Pre-Exposure. European Journal of Neuroscience, 35, 1312-1321. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jhou, T.C., et al. (2013) Cocaine Drives Aversive Conditioning via Delayed Activation of Dopamine-Responsive Habenular and Midbrain Pathways. Journal of Neuroscience, 33, 7501-7512. [Google Scholar] [CrossRef]
|
|
[32]
|
Volkow, N.D., et al. (1992) Long-Term Frontal Brain Metabolic Changes in Cocaine Abusers. Synapse, 11, 184-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Di Chiara, G. and Imperato, A. (1988) Drugs Abused by Humans Preferentially Increase Synaptic Dopamine Concentrations in the Mesolimbic System of Freely Moving Rats. Proceedings of the National Academy of Sciences of the United States of America, 85, 5274-5278. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sinha, R., et al. (2009) Enhanced Negative Emotion and Alcohol Craving, and Altered Physiological Responses Following Stress and Cue Exposure in Alcohol Dependent Individuals. Neuropsychopharmacology, 34, 1198-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Volkow, N.D., et al. (2017) Neurochemical and Metabolic Effects of Acute and Chronic Alcohol in the Human Brain: Studies with Positron Emission Tomography. Neuropharmacology, 122, 175-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yoder, K.K., et al. (2016) Differences in IV Alcohol-Induced Dopamine Release in the Ventral Striatum of Social Drinkers and Nontreatment-Seeking Alcoholics. Drug and Alcohol Dependence, 160, 163-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Rice, M.E. and Cragg, S.J. (2004) Nicotine Amplifies Re-ward-Related Dopamine Signals in Striatum. Nature Neuroscience, 7, 583-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, H. and Sulzer, D. (2004) Frequency-Dependent Modulation of Dopamine Release by Nicotine. Nature Neuroscience, 7, 581-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Smith, T.T., et al. (2016) Effects of Monoamine Oxidase Inhibition on the Reinforcing Properties of Low-Dose Nicotine. Neuropsychopharmacology, 41, 2335-2343. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ferré, S. (2016) Mechanisms of the Psychostimulant Effects of Caffeine: Implications for Substance Use Disorders. Psychopharmacology, 233, 1963-1979. [Google Scholar] [CrossRef] [PubMed]
|