学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 12 No. 4 (April 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
全测地黎曼叶状结构中的 Hopf-Rinow 定理
Hopf-Rinow Theorem on Totally Geodesic Riemannian Foliations
DOI:
10.12677/AAM.2023.124155
,
PDF
,
HTML
,
,
被引量
作者:
隗世玲
:浙江师范大学数学科学学院,浙江 金华
关键词:
全测地
;
黎曼叶状结构
;
广义 Bott 联络
;
Hopf-Rinow 定理
;
Totally Geodesic
;
Riemannian Foliations
;
The Generalized Bott Connection
;
Hopf-Rinow Theorem
摘要:
本文研究全测地黎曼叶状结构中关于广义 Bott 联络的测地线理论, 并将部分 Hopf-Rinow 定理推广到全测地黎曼叶状结构上. 它已被推广到一般的可求长的度量空间和伪厄米流形上. 在我们研究的过程中, 高斯引理的不成立带来了一些困难. 从而我们引入了自然距离 δ, 并得到若 (M, δ) 完 备则测地线完备. 但由于条件的局限性, 另一面不成立.
Abstract:
In this paper, we study the theory of geodesics with respect to the generalized Bot-t connection on totally geodesic Riemannian foliations, and part of the Hopf-Rinow theorem is generalized to totally geodesic Riemannian foliations. It has been gener- alized to length-metric spaces and pseudo-Hermitian manifolds. In the course of our research, the invalidity of Gauss lemma poses some difficulties. Thus we introduce the natural distance δ, and state that if (M, δ) is complete, then the geodesic is complete. However, due to the limitations of the conditions, the other side is not true.
文章引用:
隗世玲. 全测地黎曼叶状结构中的 Hopf-Rinow 定理[J]. 应用数学进展, 2023, 12(4): 1496-1503.
https://doi.org/10.12677/AAM.2023.124155
参考文献
[1]
Bridson, M.R. and Haefliger, A. (1999) Metric Spaces of Non-Positive Curvature. In: Grundlehren der mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin.
[2]
Gromov, M., et al. (1999) Metric Structures for Riemannian and Non-Riemannian Spaces. Vol. 152. Birkhäuser, Boston.
[3]
Dong, Y.X. and Zhang, W. (2018) Comparison Theorems in Pseudo-Hermitian Geometry and Applications. Osaka Journal of Mathematics, 55, 347-367.
[4]
Baudoin, F. and Bonnefont, M. (2015) Curvature-Dimension Estimates for the Laplace- Beltrami Operator of a Totally Geodesic Foliation. Nonlinear Analysis, 126, 159-169.
https://doi.org/10.1016/j.na.2015.06.025
[5]
Baudoin, F., Grong, E., Kuwada, K. and Thalmaier, A. (2019) Sub-Laplacian Comparison Theorems on Totally Geodesic Riemannian Foliations. Calculus of Variations and Partial Differential Equations, 58, Article No. 130.
https://doi.org/10.1007/s00526-019-1570-8
[6]
Dong, Y.X. (2020) Eells-Sampson Type Theorems for Subelliptic Harmonic Maps from Sub- Riemannian Manifolds. The Journal of Geometric Analysis, 31, 3608-3655.
https://doi.org/10.1007/s12220-020-00408-z
[7]
Petersen, P. (2006) Riemannian Geometry. Springer, New York.
[8]
Kobayashi, S. and Nomizu, K. (1969) Foundations of Differential Geometry, Vol. I. Interscience, New York.
[9]
Chavel, I. (2006) Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge.
投稿
为你推荐
友情链接
科研出版社
开放图书馆