信号重构的优化算法及其在图片恢复中的应用
An Optimization Algorithm on Signal Reconstruction and Its Application in Image Restoration
DOI: 10.12677/AAM.2023.124180, PDF, HTML, 下载: 141  浏览: 192  科研立项经费支持
作者: 王尊阳, 郭 超:北京电子科技学院电子与通信工程系,北京;孙洪春*:临沂大学数学与统计学院,山东 临沂
关键词: 信号重建和图像去躁问题算法全局收敛次线性收敛速度The Signal Reconstruction and Image Denoising Problem Algorithm Global Convergence Sublinearly Convergent Rate
摘要: 本文进一步考虑信号重构与图像去躁问题的优化方法。 为此,提出了一种基于类似Armijo线搜索 的新型算法,详细证明了该算法的全局收敛性和O(1/k2)次线性收敛速率。 最后,通过稀疏信号恢 复和图像去躁的数值实验验证了所提算法的有效性和优越性。
Abstract: In this paper, we further consider an optimization method for solving the signal recon- struction and image denoising problem. To this end, a new algorithm with Armijo-like line search is proposed. Global convergence results of the new algorithm is established in detail. Furthermore, we also show that the method is sublinearly convergent rate of O(1/k2). Finally, the efficiency of the proposed algorithm is illustrated through some numerical examples on sparse signal recovery and image denoising.
文章引用:王尊阳, 郭超, 孙洪春. 信号重构的优化算法及其在图片恢复中的应用[J]. 应用数学进展, 2023, 12(4): 1732-1743. https://doi.org/10.12677/AAM.2023.124180

参考文献

[1] Yang, J.F. and Zhang, Y. (2011) Alternating Direction Algorithms for f1-Problems in Com- pressive Sensing. SIAM Journal on Scientific Computing, 33, 250-278.
https://doi.org/10.1137/090777761
[2] Xiao, Y.H. and Song, H.N. (2012) An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems. Journal of Mathematical Imaging and Vision, 44, 114-127.
https://doi.org/10.1007/s10851-011-0314-y
[3] He, B.S., Ma, F. and Yuan, X.M. (2016) Convergence Study on the Symmetric Version of ADMM with Larger Step Sizes. SIAM Journal on Imaging Sciences, 9, 1467-1501.
https://doi.org/10.1137/15M1044448
[4] Sun, M. and Liu, J. (2016) An Inexact Generalized PRSM with LQP Regularization for Struc- tured Variational Inequalities and Its Applications to Traffic Equilibrium Problems. Journal of Inequalities and Applications, 2016, Article No. 150.
https://doi.org/10.1186/s13660-016-1095-z
[5] Sun, M., Wang, Y.J. and Liu, J. (2017) Generalized Peaceman-Rachford Splitting Method for Multiple-Block Separable Convex Programming with Applications to Robust PCA. Calcolo, 54, 77-94.
https://doi.org/10.1007/s10092-016-0177-0
[6] Sun, M. and Liu, J. (2016) A Proximal Peaceman-Rachford Splitting Method for Compressive Sensing. Journal of Applied Mathematics and Computing, 50, 349-363.
https://doi.org/10.1007/s12190-015-0874-x
[7] Yu, Y.C., Peng, J.G., Han, X.L. and Cui, A.A. (2017) A Primal Douglas-Rachford Splitting Method for the Constrained Minimization Problem in Compressive Sensing. Circuits, Systems, and Signal Processing, 36, 4022-4049.
https://doi.org/10.1007/s00034-017-0498-5
[8] Xiao, Y.H. and Zhu, H. (2013) A Conjugate Gradient Method to Solve Convex Constrained Monotone Equations with Applications in Compressive Sensing. Journal of Mathematical Anal- ysis and Applications, 405, 310-319.
https://doi.org/10.1016/j.jmaa.2013.04.017
[9] Sun HC, Sun M and Zhang BH. (2018) An Inverse Matrix-Free Proximal Point Algorithm for Compressive Sensing. Science Asia, 44, 311-318.
https://doi.org/10.2306/scienceasia1513-1874.2018.44.311
[10] Masao Fukushima. 非线性最优化基础[M]. 林贵华, 译. 北京: 科学出版社, 2011: 5.
[11] Ortega J. M. and Rheinboldt W. C. (2000) Iterative Solution of Nonlinear Equations in Several Variables. In: Classics in Applied Mathematics, Vol. 30, SIAM, Philadelphia.