基于Sugeno测度半一致模Choquet积分的特性
The Character of the Choquet Integral ofSemi-Uninorm Based on Sugeno Measures
DOI: 10.12677/PM.2023.134109, PDF, HTML,    科研立项经费支持
作者: 李巧霞*:伊犁师范大学数学与统计学院,新疆 伊宁 ;伊犁师范大学应用数学研究所,新疆 伊宁;杨雨荷, 辛 珍:伊犁师范大学数学与统计学院,新疆 伊宁;伊犁师范大学应用数学研究所,新疆 伊宁
关键词: Sugeno测度Choquet积分沙普值否决和喜爱指数Ugeno Measures Choquet Integral The Shapley The Veto and Favor Indices
摘要: 本文在基于Sugeno 测度半一致模的Choquet积分的基础上, 结合基于半一致模有序加权平均算子的特点, 讨论了基于Sugeno 测度半一致模的Choquet积分的沙普值、否决和喜爱指数。
Abstract: In this paper, the Shapley, the veto and favor indices of the Choquet Integral of semi-uninorm based on Sugeno measures are discussed and combine the characteristics of the the semi-uninorm ordered weighted averaging operators.
文章引用:李巧霞, 杨雨荷, 辛珍. 基于Sugeno测度半一致模Choquet积分的特性[J]. 理论数学, 2023, 13(4): 1040-1048. https://doi.org/10.12677/PM.2023.134109

参考文献

[1] Grabisch, M. (1995) Fuzzy Integral in Multicriteria Decision Making. Fuzzy Sets and Systems, 69, 279-298. [Google Scholar] [CrossRef
[2] Yager, R.R. (1988) On Ordered Weighted Averaging Aggregation Operators in Muiticriteria Decision Making. IEEE Transactions on Systems, Man, and Cybernetics, 18, 183-190. [Google Scholar] [CrossRef
[3] Yager, R.R. (1993) Families of OWA Operators. Fuzzy Sets and Systems, 59, 125-148. [Google Scholar] [CrossRef
[4] Dujmovic, J.J. (2008) Continuous Preference Logic for System Evaluation. IEEE Transactions on Fuzzy Systems, 15, 1082-1099. [Google Scholar] [CrossRef
[5] Jin, L.S. (2015) Some Properties and Representation Methods for Ordered Weighted Averaging Operators. Fuzzy Sets and Systems, 261, 60-86. [Google Scholar] [CrossRef
[6] Yager, R.R. (2004) OWA Aggregation over a Continuous Interval Argument with Applications to Decision Making. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34, 1952-1963. [Google Scholar] [CrossRef
[7] Li, D.F. (2011) The GOWA Operator Based Approach to Multiattribute Decision Making Using Intuitionistic Fuzzy Sets. Mathematical and Computer Modelling, 53, 1182-1196. [Google Scholar] [CrossRef
[8] Llamazares, B. (2016) SUOWA Operators: Constructing Semi-Uninorms and Analyzing Specific Cases. Fuzzy Sets and Systems, 278, 119-136. [Google Scholar] [CrossRef
[9] Llamazares, B. (2018) Closed-Form Expressions for Some Indices of SUOWA Operators. Information Fusion, 41, 80-90. [Google Scholar] [CrossRef
[10] 吴从忻, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991.
[11] Grabisch, M., Murofushi, T. and Sugeno, M. (2000) Fuzzy Measures and Integrals: Theory and Application. Physica-Verlag, Heidelberg.
[12] 巩增泰, 李巧霞. 基于Sugeno测度的半一致模有序加权平均算子及其递归集成器设计[J]. 模糊系统与数学, 2019, 33(6): 11-28.