|
[1]
|
国家食品安全风险评估中心. GB10766-2021食品安全国家标准较大婴儿配方食品[S]. 北京: 标准出版社, 2021.
|
|
[2]
|
中国人民共和国卫生部. GB 10767-2010食品安全国家标准较大婴儿和幼儿配方食品[S]. 北京: 标准出版社, 2010.
|
|
[3]
|
Kiani, A.K., Paolacci, S., Calogero, A.E., et al. (2021) From Myo-Inositol to D-Chiro-Inositol Mo-lecular Pathways. European Review for Medical and Pharmacological Sciences, 25, 2390-2402.
|
|
[4]
|
Croze, M.L. and Soulage, C.O. (2013) Potential Role and Therapeutic Interests of Myo-Inositol in Metabolic Diseases. Biochimie, 95, 1811-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Indyk, H.E., Saldo, S.C., White, P.M., et al. (2016) The Free and Total Myo-Inositol Contents of Early Lactation and Seasonal Bovine Milk. International Dairy Journal, 56, 33-37. [Google Scholar] [CrossRef]
|
|
[6]
|
Ortmeyer, H.K. (1996) Dietary Myoinositol Results in Lower Urine Glucose and in Lower Postprandial Plasma Glucose in Obese Insulin Resistant Rhesus Monkeys. Obesity Research, 4, 569-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shimon, H., Agam, G., Belmaker, R H., et al. (1997) Reduced Frontal Cortex Inositol Levels in Postmortem Brain of Suicide Victims and Patients with Bipolar Disorder. American Journal of Psychiatry, 154, 1148-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Harvey, B.H., Scheepers, A., Brand, L. and Stein, D.J. (2001) Chronic Inositol Increases Striatal D2 Receptors but Does Not Modify Dexamphetamine-Induced Motor Behavior: Relevance to Obsessive-Compulsive Disorder. Pharmacology Biochemistry and Behavior, 68, 245-253. [Google Scholar] [CrossRef]
|
|
[9]
|
Angeloff, L.G., Skoryna, S.C. and Henderson, I.W.D. (1977) Effects of the Hexahydroxyhexane Myoinositol on Bone Uptake of Radiocalcium in Rats: Effect of Inositol and Vitamin D2 on Bone Uptake of 45Ca in Rats. Acta Pharmacologica et Toxicologica, 40, 209-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dai, Z., Chung, S.K., Miao, D., et al. (2011) Sodi-um/Myo-Inositol Cotransporter 1 and Myo-Inositol Are Essential for Osteogenesis and Bone Formation. Journal of Bone and Mineral Research, 26, 582-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Croze, M.L., Vella, R.E., Pillon, N.J., et al. (2013) Chronic Treatment with Myo-Inositol Reduces White Adipose Tissue Accretion and Improves Insulin Sensitivity in Female Mice. The Journal of Nutritional Biochemistry, 24, 457-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gonzalez-Uarquin, F., Kenéz, Á., Rodehutscord, M. and Huber, K. (2020) Dietary Phytase and Myo-Inositol Supplementation Are Associated with Distinct Plasma Metabolome Profile in Broiler Chickens. Animal, 14, 549-559. [Google Scholar] [CrossRef]
|
|
[13]
|
Verner, A.M., McGuire, W. and Craig, J.S. (2006) Effect of Taurine Supplementation on Growth and Development in Preterm or Low Birth Weight Infants. Cochrane Database of Systematic Reviews, No. 3, Article No. Cd006072. [Google Scholar] [CrossRef]
|
|
[14]
|
Erbersdobler, H..F, Trautwein, E. and Greulich, H.G. (1984) Determinations of Taurine in Milk and Infant Formula Diets. European Journal of Pediatrics, 142, 133-134. [Google Scholar] [CrossRef]
|
|
[15]
|
Geggel, H.S., Ament, M.E., Heckenlively, J.R., Martin, D.A. and Kop-ple, J.D. (1985) Nutritional Requirement for Taurine in Patients Receiving Long-Term Parenteral Nutrition. New England Journal of Medicine, 312, 142-146. [Google Scholar] [CrossRef]
|
|
[16]
|
Vallecalle-Sandoval, M.-H., Heaney, G., Sersen, E. and Sturman, J.A. (1991) Comparison of the Developmental Changes of the Brainstem Auditory Evoked Response (BAER) in Taurine-Supplemented and Taurine-Deficient Kittens. International Journal of Developmental Neuroscience, 9, 571-579. [Google Scholar] [CrossRef]
|
|
[17]
|
Wharton, B.A., Morley, R., Isaacs, E.B., Cole, T.J. and Lucas, A. (2004) Low Plasma Taurine and Later Neurodevelopment. Archives of Disease in Childhood-Fetal and Neonatal Edition, 89, F497-F498. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chesney, R.W. (1985) Taurine: Its Biological Role and Clinical Im-plications. Advances in Pediatrics, 32, 1-42.
|
|
[19]
|
Goswami, S.K. and Frey, C.F. (1977) A Method for the Separation of Glycine-Conjugated Bile Acids as a Group from Taurine-Conjugated Bile Acids. Biochemical Medicine, 17, 20-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Alves, E., Castro, M., Saqueti, B., et al. (2021) Whey Isolation from Rejected Human Milk and Its Lipid Content Characterization by GC-FID and ESI-MS. Journal of the Brazilian Chemical Society, 32, 1884-1894. [Google Scholar] [CrossRef]
|
|
[21]
|
Wei, W., Feng, Y., Zhang, X., Cao, X. and Feng, F. (2015) Synthesis of Structured Lipid 1,3-Dioleoyl-2-Palmitoylgly- cerol in Both Solvent and Solvent-Free System. LWT-Food Science and Technology, 60, 1187-1194. [Google Scholar] [CrossRef]
|
|
[22]
|
Béghin, L., Marchandise, X., Lien, E., et al. (2019) Growth, Stool Consistency and Bone Mineral Content in Healthy Term Infants Fed sn-2-Palmitate-Enriched Starter Infant Formula: A Randomized, Double-Blind, Multicentre Clinical Trial. Clinical Nutrition, 38, 1023-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bongers, M.E., de Lorijn, F., Reitsma, J.B., et al. (2007) The Clin-ical Effect of a New Infant Formula in Term Infants with Constipation: A Double-Blind, Randomized Cross-Over Trial. Nutrition Journal, 6, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kennedy, K., Fewtrell, M.S., Morley, R., et al. (1999) Double-Blind, Randomized Trial of a Synthetic Triacylglycerol in Formula-Fed Term Infants: Effects on Stool Biochemistry, Stool Characteristics, and Bone Mineralization. The American Journal of Clinical Nutrition, 70, 920-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lucas, A., Quinlan, P., Abrams, S., Ryan, S., Meah, S. and Lucas, P.J. (1997) Randomised Controlled Trial of a Synthetic Triglyceride Milk Formula for Preterm Infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 77, F178-F184. [Google Scholar] [CrossRef]
|
|
[26]
|
Yaron, S., Sha-char, D., Abramas, L., et al. (2013) Effect of High β-Palmitate Content in Infant Formula on the Intestinal Microbiota of Term Infants. Journal of Pediatric Gastroenterology and Nutrition, 56, 376-381. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhu, B., Zheng, S., Lin, K., et al. (2021) Effects of Infant Formula Supplemented with Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial. Fron-tiers in Cellular and Infection Microbiology, 11, Article 650407. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bar-Yoseph, F., Lifshitz, Y., Cohen, T., et al. (2017) SN2-Palmitate Improves Crying and Sleep in Infants Fed Formula with Prebiotics: A Double-Blind Randomized Clinical Trial. Clinics in Mother and Child Health, 14, Article No. 263. [Google Scholar] [CrossRef]
|
|
[29]
|
Marques, M.C., Perina, N.P., Mosquera, E.M.B., et al. (2021) DHA Bioaccessibility in Infant Formulas and Preschool Children Milks. Food Research International, 149, Article ID: 110698. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
MacDonald, I.M., Hebert, M., Yau, R.J., et al. (2004) Effect of Docosahexaenoic Acid Supplementation on Retinal Function in a Patient with Autosomal Dominant Star-gardt-Like Retinal Dystrophy. British Journal of Ophthalmology, 88, 305-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hoffman, D.R., Boettcher, J.A. and Diersen-Schade, D.A. (2009) Toward Optimizing Vision and Cognition in Term Infants by Dietary Docosahexaenoic and Arachidonic Acid Supple-mentation: A Review of Randomized Controlled Trials. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81, 151-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010) Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA Journal, 8, 1461. [Google Scholar] [CrossRef]
|
|
[33]
|
Calder, P.C. (2010) Does Early Exposure to Long Chain Polyunsatu-rated Fatty Acids Provide Immune Benefits? The Journal of Pediatrics, 156, 869-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xu, H., Su, Y., Zhang, L., et al. (2022) Effects of Dietary Galac-tooligosaccharide on Growth, Antioxidants, Immunity, Intestinal Morphology and Disease Resistance against Aeromons hydrophila in Juvenile Hybrid Sturgeon (Acipenser baerii♀ × A. schrenckii♂). Aquaculture Reports, 23, Article ID: 101097. [Google Scholar] [CrossRef]
|
|
[35]
|
Kapiki, A., et al. (2007) The Effect of a Fruc-to-Oligosaccharide Supplemented Formula on Gut Flora of Preterm Infants. Early Human Development, 83, 335-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Euler, A.R., Mitchell, D.K., Kline, R. and Pickering, L.K. (2005) Prebiotic Effect Of Fructo-Oligosaccharide Supplemented Term Infant Formula at Two Concentrations Compared with Unsupplemented Formula and Human Milk. Journal of Pediatric Gastroenterology and Nutrition, 40, 157-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shi, L., Fang, B., Yong, Y., et al. (2019) Chitosan Oli-gosaccharide-Mediated Attenuation of LPS-Induced Inflammation in IPEC-J2 Cells Is Related to the TLR4/NF-κB Sig-naling Pathway. Carbohydrate Polymers, 219, 269-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhao, S., Peng, X., Zhou, Q., et al. (2021) Bacillus coagulans 13002 and Fructo-Oligosaccharides Improve the Immunity of Mice with Immunosuppression Induced by Cyclophos-phamide through Modulating Intestinal-Derived and Fecal Microbiota. Food Research International, 140, Article ID: 109793. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, G., Wang, H., Jin, Y., et al. (2022) Galactooligosaccha-rides as a Protective Agent for Intestinal Barrier and Its Regulatory Functions for Intestinal Microbiota. Food Research International, 155, Article ID: 111003. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pekala, J., Bozena, P., Robert, B., et al. (2011) L-Carnitine—Metabolic Functions and Meaning in Humans Life. Current Drug Metabolism, 12, 667-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ozaki, K., Sano, T., Tsuji, N., Matsuura, T. and Narama, I. (2011) Carnitine Is Necessary to Maintain the Phenotype and Function of Brown Adipose Tissue. Laboratory Investiga-tion, 91, 704-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
崔亚杰, 宋春兰, 陈芳, 李鹏, 成怡冰. 左卡尼汀对柯萨奇A16型病毒感染手足口病的心肌保护作用[J]. 中国当代儿科杂志, 2017, 19(8): 908-912.
|
|
[43]
|
Schmidt-Sommerfeld, E., Penn, D. and Wolf, H. (1983) Carnitine Deficiency in Premature Infants Receiving Total Parenteral Nutrition: Effect of L-Carnitine Supplementation. The Journal of Pediatrics, 102, 931-935. [Google Scholar] [CrossRef]
|
|
[44]
|
Gheissari, A., Aslani, N., Eshraghi, A., et al. (2020) Preven-tive Effect of L-Carnitine on Scar Formation during Acute Pyelonephritis: A Randomized Placebo-Controlled Trial. American Journal of Therapeutics, 27, e229-e234. [Google Scholar] [CrossRef]
|
|
[45]
|
Giordano, E. and Quadro, L. (2018) Lutein, Zeaxanthin and Mammalian Development: Metabolism, Functions and Implications for Health. Archives of Biochemistry and Biophysics, 647, 33-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Perrone, S., Negro, S., Tataranno, M.L. and Buonocore, G. (2010) Oxidative Stress and Antioxidant Strategies in Newborns. The Journal of Maternal-Fetal & Neonatal Medicine, 23, 63-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gazzolo, D., Picone, S., Gaiero, A., et al. (2021) Early Pediat-ric Benefit of Lutein for Maturing Eyes and Brain—An Overview. Nutrients, 13, Article No. 3239. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Perrone, S., Longini, M., Marzocchi, B., et al. (2010) Effects of Lutein on Oxidative Stress in the Term Newborn: A Pilot Study. Neonatology, 97, 36-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lieblein-Boff, J.C., Johnson, E.J., Kennedy, A.D., Lai, C.-S. and Kuchan, M.J. (2015) Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain. PLOS ONE, 10, e0136904. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bernstein, P.S., Delori, F.C., Richer, S., van Kuijk, F.J.M. and Wenzel, A.J. (2010) The Value of Measurement of Macular Carotenoid Pigment Optical Densities and Distributions in Age-Related Macular Degeneration and Other Retinal Disorders. Vision Research, 50, 716-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yu, V.Y. (1998) The Role of Dietary Nucleotides in Neonatal and Infant Nutrition. Singapore Medical Journal, 39, 145-150.
|
|
[52]
|
Nagafuchi, S., Katayanagi, T., Nakagawa, E., et al. (1997) Effects of Dietary Nucleotides on Serum Antibody and Splenic Cytokine Production in Mice. Nutrition Research, 17, 1163-1174. [Google Scholar] [CrossRef]
|
|
[53]
|
Brunser, O., Espinoza, J., Araya, M., Cruchet, S. and Gil, A. (1994) Effect of Dietary Nucleotide Supplementation on Diarrhoeal Disease in Infants. Acta Paediatrica, 83, 188-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Uauy, R., Stringel, G., Thomas, R. and Quan, R. (1990) Effect of Dietary Nucleosides on Growth and Maturation of the Developing Gut in the Rat. Journal of Pediatric Gastro-enterology and Nutrition, 10, 497-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hawkes, J.S., Gibson, R.A., Roberton, D. and Makrides, M. (2006) Effect of Dietary Nucleotide Supplementation on Growth and Immune Function in Term Infants: A Random-ized Controlled Trial. European Journal of Clinical Nutrition, 60, 254-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, B., Timilsena, Y.P., Blanch, E. and Adhikari, B. (2019) Lac-toferrin: Structure, Function, Denaturation and Digestion. Critical Reviews in Food Science and Nutrition, 59, 580-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sawale, M., Ozadali, F., Christina, J., et al. (2022) Impact of Bovine Lactoferrin Fortification on Pathogenic Organisms to Attenuate the Risk of Infection for Infants. Food Control, 139, Article ID: 109078. [Google Scholar] [CrossRef]
|
|
[58]
|
Abad, I., Sangüesa, A., Ubieto, M., et al. (2022) Protective Effect of Bovine Lactoferrin against Cronobacter sakazakii in Human Intestinal Caco-2/TC7 Cells. International Dairy Journal, 133, Article ID: 105428. [Google Scholar] [CrossRef]
|
|
[59]
|
Faix, R.G. (2010) Bovine Lactoferrin Appears to Decrease the Incidence of Sepsis in Very Low-Birth Weight Infants. The Journal of Pediatrics, 156, 856. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chen, K., Jin, S., Chen, H., et al. (2021) Dose Effect of Bovine Lactoferrin Fortification on Diarrhea and Respiratory Tract Infections in Weaned Infants with Anemia: A Randomized, Controlled Trial. Nutrition, 90, Article ID: 111288. [Google Scholar] [CrossRef] [PubMed]
|