|
[1]
|
Doyle, M., Fuller, T.F. and Newman, J. (1993) Modeling of Galvanostatic Charge and Discharge of the Lithium/ Polymer/Insertion Cell. Journal of the Electrochemical Society, 140, 1526-1533. [Google Scholar] [CrossRef]
|
|
[2]
|
Yang, Y., Chen, L., Yang, L.J., Du, X.Z. and Yang, Y.P. (2020) Capacity Fade Characteristics of Lithium Iron Phosphate Cell during Dynamic Cycle. Energy, 206, Article ID: 118155. [Google Scholar] [CrossRef]
|
|
[3]
|
Ouyang, T.C., Liu, B.L., Xu, P.H., Wang, C.C. and Ye, J.L. (2022) Electrochemical-Thermal Coupled Modelling and Multi-Measure Prevention Strategy for Li-Ion Battery Thermal Runaway. International Journal of Heat and Mass Transfer, 194, Article ID: 123082. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, Y., Tang, S., Li, L.X., et al. (2020) Simulation and Parameter Identification Based on Electrochemical-Thermal Coupling Model of Power Lithium Ion-Battery. Journal of Alloys and Compounds, 844, Article ID: 156003. [Google Scholar] [CrossRef]
|
|
[5]
|
He, T.F., Zhang, T., Wang, Z.R. and Cai, Q. (2022) A Comprehensive Numerical Study on Electrochemical-Thermal Models of a Cylindrical Lithium-Ion Battery during Discharge Process. Applied Energy, 313, Article ID: 118797. [Google Scholar] [CrossRef]
|
|
[6]
|
Hamza, M., Li, J.Y., Zhang, W.T., et al. (2022) Multi-Scale Electrochemical Thermal Model of Electric Double Layer Capacitor under Galvanostatic Cycling. Journal of Power Sources, 548, Article ID: 231983. [Google Scholar] [CrossRef]
|
|
[7]
|
Yin, L.T., Björneklett, A., Söderlund, E. and Brandell, D. (2021) Analyzing and Mitigating Battery Ageing by Self- Heating through a Coupled Thermal-Electrochemical Model of Cylindrical Li-Ion Cells. Journal of Energy Storage, 39, Article ID: 102648. [Google Scholar] [CrossRef]
|
|
[8]
|
He, C.X., Yue, Q.L., Wu, M.C., Chen, Q. and Zhao, T.S. (2021) A 3D Electrochemical-Thermal Coupled Model for Electrochemical and Thermal Analysis of Pouch-Type Lithium-Ion Batteries. International Journal of Heat and Mass Transfer, 181, Article ID: 121855. [Google Scholar] [CrossRef]
|
|
[9]
|
Tamilselvi, S., Gunasundari, S., Karuppiah, N., Razak, R.K.A., Madhusudan, S., Nagarajan, V.M., et al. (2021) A Review on Battery Modelling Techniques. Sustainability, 13, Article No. 10042. [Google Scholar] [CrossRef]
|
|
[10]
|
Fotouhi, A., Auger, D.J., Propp, K., Longo, S. and Wild, M. (2016) A Review on Electric Vehicle Battery Modelling: From Lithium-Ion toward Lithium-Sulphur. Renewable and Sustainable Energy Reviews, 56, 1008-1021. [Google Scholar] [CrossRef]
|
|
[11]
|
Romero-Becerril, A. and Alvarez-Icaza, L. (2011) Comparison of Discretization Methods Applied to the Single-Particle Model of Lithium-Ion Batteries. Journal of Power Sources, 196, 10267-10279. [Google Scholar] [CrossRef]
|
|
[12]
|
Baba, N., Yoshida, H., Nagaoka, M., Okuda, C. and Kawauchi, S. (2014) Numerical Simulation of Thermal Behavior of Lithium-Ion Secondary Batteries Using the Enhanced Single Particle Model. Journal of Power Sources, 252, 214-228. [Google Scholar] [CrossRef]
|
|
[13]
|
Pozzi, A., Ciaramella, G., Volkwein, S. and Raimondo, D.M. (2019) Optimal Design of Experiments for a Lithium-Ion Cell: Parameters Identification of an Isothermal Single Particle Model with Electrolyte Dynamics. Industrial & Engineering Chemistry Research, 58, 1286-1299. [Google Scholar] [CrossRef]
|
|
[14]
|
Aldo, R. and Luis, A. (2011) Comparison of Discretization Methods Applied to the Single-Particle Model of Lithium- Ion Batteries. Journal of Power Sources, 196, 10267-10279. [Google Scholar] [CrossRef]
|
|
[15]
|
Hu, X.S., Li, S.B. and Peng, H. (2012) A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries. Journal of Power Sources, 198, 359-367. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, Q., Jiang, B., Li, B. and Yan, Y. (2016) A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles. Renewable and Sustainable Energy Reviews, 64, 106-128. [Google Scholar] [CrossRef]
|
|
[17]
|
Johnson, V. (2002) Battery Performance Models in ADVISOR. Journal of Power Sources, 110, 321-329. [Google Scholar] [CrossRef]
|
|
[18]
|
Ding, X., Zhang, D., Cheng, J., Wang, B. and Luk, P.C.K. (2019) An Improved the Venin Model of Lithium-Ion Battery with High Accuracy for Electric Vehicles. Applied Energy, 254, Article ID: 113615. [Google Scholar] [CrossRef]
|
|
[19]
|
Yao, L.W., Wirun, A., Aziz, J. and Sutikno, T. (2015) Battery State of Charge Estimation with Extended Kalman Filter Using Third Order the Venin Model. Telkomnika, 13, 401-412. [Google Scholar] [CrossRef]
|
|
[20]
|
Xia, B., Sun, Z., Zhang, R. and Lao, Z. (2017) A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model. Energies, 10, Article No. 457. [Google Scholar] [CrossRef]
|
|
[21]
|
Liu, C., Hu, M., Jin, G., Xu, Y. and Zhai, J. (2021) State of Power Estimation of Lithium-Ion Battery Based on Fractional-Order Equivalent Circuit Model. Journal of Energy Storage, 41, Article ID: 102954. [Google Scholar] [CrossRef]
|
|
[22]
|
Ruan, H., Sun, B., Jiang, J., Zhang, W., He, X., Su, X., et al. (2021) A Modified-Electrochemical Impedance Spectroscopy-Based Multi-Time-Scale Fractional-Order Model for Lithium-Ion Batteries. Electrochimica Acta, 394, Article ID: 139066. [Google Scholar] [CrossRef]
|
|
[23]
|
Zou, C., Zhang, L., Hu, X., Wang, Z., Wik, T. and Pecht, M. (2018) A Review of Fractional-Order Techniques Applied to Lithium-Ion Batteries, Lead-Acid Batteries, and Supercapacitors. Journal of Power Sources, 390, 286-296. [Google Scholar] [CrossRef]
|