|
[1]
|
Russell, J.S. (1845) On Waves, Report of the 14th Meeting of the British Association for the Advancement of Science. John Murray, London, 311-390.
|
|
[2]
|
Boussinesq, J. (1872) Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathematiques Pures et Appliquees, 17,55-108.
|
|
[3]
|
Bona, J.L. and Sachs, R.L. (1988) Global Existence of Smooth Solutions and Stability of Solitary Waves for a Generalized Boussinesq Equation. Communications in Mathematical Physics, 118, 15-29. [Google Scholar] [CrossRef]
|
|
[4]
|
Farah, L.G. (2009) Local Solutions in Sobolev Spaces with Negative Indices for the "Good" Boussinesq Equation. Communications in Partial Differential Equations, 34, 52-57. [Google Scholar] [CrossRef]
|
|
[5]
|
Kishimoto, N. and Tsugawa, K. (2010) Local Well-Posedness for Quadratic Nonlinear
Schrodinger Equations and the \Good" Boussinesq Equation. Differential and Integral Equations, 23, 463-493.[CrossRef]
|
|
[6]
|
Linares, F. (1993) Global Existence of Small Solutions for a Generalized Boussinesq Equation. Journal of Differential Equations, 106, 257-293. [Google Scholar] [CrossRef]
|
|
[7]
|
Tsutsumi, M. and Matahashi, T. (1991) On the Cauchy Problem for the Boussinesq Type
Equation. Mathematica Japonica, 36, 321-347.
|
|
[8]
|
Liu, Y. (1997) Decay and Scattering of Small Solutions of a Generalized Boussinesq Equation. Journal of Functional Analysis, 147, 51-68. [Google Scholar] [CrossRef]
|
|
[9]
|
Cho, Y. and Ozawa, T. (2007) On Small Amplitude Solutions to the Generalized Boussinesq Equations. Discrete and Continuous Dynamical Systems, 17, 691-711. [Google Scholar] [CrossRef]
|
|
[10]
|
Sachs, R.L. (1990) On the Blow-Up of Certain Solutions of the \Good" Boussinesq Equation. Applicable Analysis, 36, 145-152. [Google Scholar] [CrossRef]
|
|
[11]
|
Straughan, B. (1992) Global Nonexistence of Solutions to Some Boussinesq Type Equations. Journal of Mathematical and Physical Sciences, 26, 145-152.
|
|
[12]
|
Liu, Y. and Xu, R. (2008) Global Existence and Blow Up of Solutions for Cauchy Problem of Generalized Boussinesq Equation. Physica D: Nonlinear Phenomena, 237, 721-731. [Google Scholar] [CrossRef]
|
|
[13]
|
Yang, Z. and Guo, B. (2008) Cauchy Problem for the Multi-Dimensional Boussinesq Type Equation. Journal of Mathematical Analysis and Applications, 340, 64-80. [Google Scholar] [CrossRef]
|
|
[14]
|
Varlamov, V. (1996) Existence and Uniqueness of a Solution to the Cauchy Problem for the Damped Boussinesq Equation. Mathematical Methods in the Applied Sciences, 19, 639-649. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, Y.X. (2013) Asymptotic Decay Estimate of Solutions to the Generalized Damped Bq Equation. Journal of Inequalities and Applications, 2013, Article No. 323. [Google Scholar] [CrossRef]
|
|
[16]
|
Liu, M. and Wang, W. (2014) Global Existence and Pointwise Estimate of Solutions for the Multidimensional Generalized Boussinesq Type Equation. Communications on Pure and Applied Analysis, 13, 1203-1222. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, G. and Wang, W. (2019) Inviscid Limit for the Damped Boussinesq Equation. Journal of Differential Equations, 267, 5521-5542. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, G. and Wang, W. (2020) Decay Estimates for a Dissipative-Dispersive Linear Semigroup and Application to the Viscous Boussinesq Equation. Journal of Functional Analysis, 278, Article 108413. [Google Scholar] [CrossRef]
|
|
[19]
|
Xu, R.Z., Luo, Y.B., Shen, J.H. and Huang, S.B. (2017) Global Existence and Blow Up
for Damped Generalized Boussinesq Equation. Acta Mathematicae Applicatae Sinica, English
Series, 33, 251-262.[CrossRef]
|
|
[20]
|
Wang, Y. and Li, Y. (2018) Time Periodic Solutions to the Beam Equation with Weak Damping. Journal of Mathematical Physics, 59, Article 111503. [Google Scholar] [CrossRef]
|
|
[21]
|
王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.
|