葫芦[7]脲对孔雀石绿的包结作用及应用
Inclusion Complex of Malachite Green with Cucurbit[7]uril and Detection of Malachite Green using Cucurbit[7]uril
摘要: 利用荧光光谱滴定法研究孔雀石绿和葫芦[7]脲的包结作用,在一定的浓度范围内,我们发现孔雀石绿的荧光强度随着葫芦[7]脲的浓度的增加而增加,同时,最大发射峰的位置发生了一定程度的红移。我们利用了紫外–可见吸收光谱、荧光光谱、IR、1H NMR和量子化学计算等方法研究了水溶液中孔雀石绿与葫芦[7]脲之间的包结行为,探讨了MG-CB[7]的包结机理。相关的结果表明孔雀石绿与葫芦[7]之间形成1:1的包结络合物。该方法的检出限是4.2 × 10–8 mol·L–1。
Abstract: The interaction between malachite green (MG) and cucurbit[7]uril (CB7) had been studied based on fluores-cence and 1H NMR spectroscopic results. The interaction mechanism was also discussed concretely based on 1H NMR results. The fluorescence intensity of malachite green (MG) enhanced strongly and a slight red shift was observed at the maximum emission peak when added into cucurbit[7]uril. We had found that the formation of the complex at a 1:1 complex stoichiometry and the association constant was calculated by applying a deduced equation. The thermody-namic parameters such as ΔH and ΔS values were obtained according to Van’t Hoff equation, respectively. We prepared the solid inclusion complex from co-evaporation method and characterised it by 1H NMR、IR. For the efficient detection of malachite green, the limit of detection was 4.2 × 10–8 mol·L–1 from our experiments which will make our method applied to detect the malachite green in sewage effectively.
文章引用:唐冬宝, 孙军勇, 武凯, 李涛, 周运友. 葫芦[7]脲对孔雀石绿的包结作用及应用[J]. 分析化学进展, 2012, 2(2): 7-13. http://dx.doi.org/10.12677/aac.2012.22002

参考文献

[1] G. Y. Chen, S. Miao. HPLC determination and MS confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7109-7114.
[2] D. J. Alderman. Malachite green: A review. Journal of Fish Disease, 1985, 8(3): 289-298.
[3] S. L. Stead, H. Ashwin, B. H. Johnston, A. Dallas, S. A. Kazakov, J. A. Tarbin, M. Sharman, J. Kay and B. J. Keely. An RNA-ap- tamer based on assay for the detection and analysis of malachite green and leucomalachite green residues in fish tissue. Ana- lytical Chemistry, 2010, 82(7): 2652-2660.
[4] F. Ding, W. Liu, F. Liu, Z. Y. Li and Y. Sun. A study of the interaction between malachite green and lysozyme by steady- state fluorescnece. Journal of Fluorescence, 2009, 19(5): 783- 791.
[5] S. Srivastava, R. Sinha and D. Roy. Toxicological effect of malachite green. Aquatic Toxicology, 2004, 66(3): 319-329.
[6] C. Berberidou, I. Poulios, N. P. Xekoukoulotaki and D. Mant- zavinos. Sonolytic, photocatalytic and sonophotocatalytic deg- radation of malachite green in aqueous solutions. Applied Ca- talysis B Environmental, 2007, 74(1-2): 63-72.
[7] W. C. Andersen, S. B. Turnipseed, C. M. Karbiwnyk, R. H. Lee, S. B. Clark, W. D. Rowe, M. R. Madson and K. E. Miller. Multiresidue method for the triphenylmethane dyes in fish, malachite green, crystal (gentian) violet and brilliant green. Analytica Chimica Acta, 2009, 637(1-2): 279-289.
[8] J. L. Allen, J. R. Meinertz. Post-column reaction for simultane- ous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection. Journal of Chromatography A, 1991, 536: 217-222.
[9] S. M. Plakas, K. R. E. Said, G. R. Stehly and J. E. Roybal. Opti- mization of a liquid chromatographic method for determination of malachite green and its metabolites in fish tissues. Journal of AOAC International, 1995, 78(6): 1388-1394.
[10] J. A. Tarbin, K. A. Barnes, J. Bygrave and W. H. H. Farrington. Screening and confirmation of triphenylmethane dyes and their leuco metabolites in trout muscle using HPLC-vis and LC-elec- trospray MS. Analyst, 1998, 123(12): 2567-2571.
[11] C. Long, Z. Mai, B. Zhu, X. Zou, Y. Gao and X. Huang. New oxidant used for the post-column derivatization determination of malachite green and leucomalachite green residues in cultured aquatic products by high-performance liquid chromatography. Journal of Chromatography A, 2008, 1203(1): 21-26.
[12] C. Marquez, W. M. Nau. Polarizabilities inside molecular containers. Angewandte Chemie International Edition, 2001, 40(23): 4387- 4390.
[13] J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs. The cucurbit[n]uril family. Angewandte Chemie International Edition, 2005, 44(31): 4844-4870.
[14] K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim and J. Kim. Functionalized cucurbiturils and their applications. Che- mical Society Reviews, 2007, 36(2): 267-279.
[15] Y. Tan, S. W. Choi, J. W. Lee, Y. H. Ko and K. Kim. Synthesis and characterization of novel side-chain pseudopolyro-taxane containing cucurbituril. Macromolecules, 2002, 35(18): 7161- 7165.
[16] J. W. Lee, Y. H. Ko, S.-H. Park, K. Yamaguchi and K. Kim. Novel pseudorotaxane-terminated dendrimers: Supramolecule modification of dendrimer periphery. Angewandte Chemie In- ternational Edition, 2001, 40(4): 746-749.
[17] J. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim and K. Kim. Cucurbituril homologues and derivatives:  New opportunity in su- pramolecular chemistry. Accounts of Chemical Research, 2003, 36(8): 621-630.
[18] J. Mohanty, W. M. Nau. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2,2,2] oct-2-ene. Photochemical and Photobiological Science, 2004, 3(11-12): 1026-1031.
[19] C. Marquez, W. M. Nau. Polarizabilities inside molecular containers. Angewandte Chemie International Edition, 2001, 40(23): 4387-4390.
[20] S. D. Choudhury, J. Mohanty, H. Pal and A. C. Bhasikuttan. Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: Demonstration of a stimulus-responsive fluorescent supramolecular capsule. Journal of the American Chemical So- ciety, 2010, 132(4): 1395-1404.
[21] F. Xing, D. Hao, C. Kai, X. Xin, X. L. Shi, F. X. Sai, Q. Z. Yun, J. Z. Qian, T. Zhu, Y. Z. Xiao and W. Gang. Design and synthesis of self-assembly supramolecular entities based on noncovalent interaction of cucurbit[5]uril, metal ions, and hydroxybenzene or its derivatives. Crystal Growth & Design, 2010, 10(7): 2901- 2907.
[22] J. S. Liu, N. Jiang, J. Ma and X. Z. Du. Insight into unusual downfield NMR shifts in the inclusion complex of acridine or- ange with cucurbit[7]uril. European Journal of Organic Che- mistry, 2009, 2009(29): 4931-4938.
[23] J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim. New cucurbituril homologues: Syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). Journal of the American Che- mical Society, 2000, 122(3): 540-541.
[24] A. I. Day, A. P. Arnold, R. J. Blanch and B. Snushall. Control- ling factors in the synthesis of cucurbituril and its homologues. Journal of Organic Chemistry, 2001, 66(24): 8094-8100.
[25] Y. M. Jeon, J. Kim, D. Whang and K. Kim. Molecular container assembly capable of controlling binding and release of its guest molecules: Re-versible encapsulation of organic molecules in sodium ion complexed cucurbituril. Journal of the American Chemical Society, 1996, 118(40): 9790-9791.
[26] C. Marquez, R. R. Hudgins and W. M. Nau. The mechanism of host-guest complexation by cucurbituril. Journal of the Ame- rican Chemical Society, 2004, 126(18): 5806-5816.
[27] C. Marquez, H. Fang and W. M. Nau. Cucurbiturils: Molecular nanocapsules for time-resolved fluorescence-based assays. IEEE Transactions on Nano-Bioscience, 2004, 3(1): 39-45.
[28] A. C. Bhasikuttan, J. Mohanty, W. M. Nau and H. Pal. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-bimolecular host-protein assembly. Angewandte Chemie International Edition, 2007, 46(22): 4120-4122.