|
[1]
|
Zhang, Q., Han, W., Xu, Z., Li, Y., Chen, L., Bai, Z., Yang, L. and Wang, X. (2020) Hollow Waxberry-Like Cobalt-Nickel Oxide/S,N-Codoped Carbon Nanospheres as a Trifunctional Electrocatalyst for OER, ORR, and HER. RSC Advances, 10, 27788-27793. [Google Scholar] [CrossRef]
|
|
[2]
|
Wang, J., Fan, Y., Qi, S., Li, W. and Zhao, M. (2020) Bifunctional HER/OER or OER/ORR Catalytic Activity of Two-Dimensional TM3(HITP)2 with TM = Fe-Zn. The Journal of Physical Chemistry C, 124, 9350-9359. [Google Scholar] [CrossRef]
|
|
[3]
|
Banerjee, S., Debata, S., Madhuri, R. and Sharma, P.K. (2018) Electrocatalytic Behavior of Transition Metal (Ni, Fe, Cr) Doped Metal Oxide Nanocomposites for Oxygen Evolution Reaction. Applied Surface Science, 449, 660-668. [Google Scholar] [CrossRef]
|
|
[4]
|
Wang, H., Zhang, K.H.L., Hofmann, J.P., de la Peña O’Shea, V.A. and Oropeza, F.E. (2021) The Electronic Structure of Transition Metal Oxides for Oxygen Evolution Reaction. Journal of Materials Chemistry A, 9, 19465-19488. [Google Scholar] [CrossRef]
|
|
[5]
|
Yamada, I., Takamatsu, A., Asai, K., Ohzuku, H., Shirakawa, T., Uchimura, T., Kawaguchi, S., Tsukasaki, H., Mori, S., Wada, K., Ikeno, H. and Yagi, S. (2018) Synergistically Enhanced Oxygen Evolution Reaction Catalysis for Multielement Transition-Metal Oxides. ACS Applied Energy Materials, 1, 3711-3721. [Google Scholar] [CrossRef]
|
|
[6]
|
Ke, W., Zhang, Y., Imbault, A.L. and Li, Y. (2021) Metal-Organic Framework Derived Iron-Nickel Sulfide Nanorods for Oxygen Evolution Reaction. International Journal of Hydrogen Energy, 46, 20941-20949. [Google Scholar] [CrossRef]
|
|
[7]
|
Thangasamy, P., Oh, S., Nam, S., Randriamahazaka, H. and Oh, I.K. (2020) Ferrocene-Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction. Small, 16, e2001665. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, H., Yang, J., Yang, L., Zhang, G., Liu, C., Tang, H., Zhao, Q. and Pan, F. (2018) FeCoNi Sulphide-Derived Nanodots as Electrocatalysts for Efficient Oxygen Evolution Reaction. Functional Materials Letters, 11, Article ID: 1850058. [Google Scholar] [CrossRef]
|
|
[9]
|
Li, Z., Dou, X., Zhao, Y. and Wu, C. (2016) Enhanced Oxygen Evolution Reaction of Metallic Nickel Phosphide Nanosheets by Surface Modification. Inorganic Chemistry Frontiers, 3, 1021-1027. [Google Scholar] [CrossRef]
|
|
[10]
|
Song, C., Liu, Y., Wang, Y., Tang, S., Li, W., Li, Q., Zeng, J., Chen, L., Peng, H. and Lei, Y. (2021) Highly Efficient Oxygen Evolution and Stable Water Splitting by Coupling NiFe LDH with Metal Phosphides. Science China Materials, 64, 1662-1670. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhou, L.N., Yu, L., Liu, C. and Li, Y.J. (2020) Electrocatalytic Activity Sites for the Oxygen Evolution Reaction on Binary Cobalt and Nickel Phosphides. RSC Advances, 10, 39909-39915. [Google Scholar] [CrossRef]
|
|
[12]
|
Asen, P. and Esfandiar, A. (2021) Facile Synthesis of Highly Efficient Bifunctional Electrocatalyst by Vanadium Oxysulfide Spheres on Cobalt-Cobalt Sulfonitride Nanosheets for Oxygen and Hydrogen Evolution Reaction. Electrochimica Acta, 391, Article ID: 138948. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, T., Zhang, B., Peng, Q., Zhou, J. and Sun, Z. (2021) Mo2B2 MBene-Supported Single-Atom Catalysts as Bifunctional HER/OER and OER/ORR Electrocatalysts. Journal of Materials Chemistry A, 9, 433-441. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhao, R., Ni, B., Wu, L., Sun, P. and Chen, T. (2022) Carbon-Based Iron-Cobalt Phosphate FeCoP/C as an Effective ORR/OER/HER Trifunctional Electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 635, Article ID: 128118. [Google Scholar] [CrossRef]
|
|
[15]
|
Liang, H.W., Wei, W., Wu, Z.S., Feng, X. and Mullen, K. (2013) Mesoporous Metal-Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 135, 16002-16005. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, W., Hou, Y., Lin, Z., Yang, S., Yu, C., Lei, C., Wu, X., He, D., Jia, Q., Zheng, G., Zhang, X. and Lei, L. (2018) Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 11, 1479-1485. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wahab, M.A., Joseph, J., Atanda, L., Sultana, U.K., Beltramini, J.N., Ostrikov, K., Will, G., O’Mullane, A.P. and Abdala, A. (2020) Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 3, 1439-1447. [Google Scholar] [CrossRef]
|
|
[18]
|
刘影. 新型杂合纳米结构的可控合成及其电催化性能研究[D]: [博士学位论文]. 南京: 南京师范大学, 2020.
|
|
[19]
|
Huo, J., Chen, Y., Liu, Y., Guo, J., Lu, L., Li, W., Wang, Y. and Liu, H. (2019) Bifunctional Iron Nickel Phosphide Nanocatalysts Supported on Porous Carbon for Highly Efficient Overall Water Splitting. Sustainable Materials and Technologies, 22, e00117. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, X., Li, J., Sun, Y., Li, Z., Liu, P., Liu, Q., Tang, L. and Guo, J. (2018) N-Doped Reduced Graphene Oxide Supported Mixed Ni2P CoP Realize Efficient Overall Water Electrolysis. Electrochimica Acta, 282, 626-633. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, L., Wu, P., Yang, S., Qian, K., Sun, W., Wei, W., Xu, Y. and Xie, J. (2019) Fabrication of CNTs Encapsulated Nickel-Nickel Phosphide Nanoparticles on Graphene for Remarkable Hydrogen Evolution Reaction Performance. Journal of Electroanalytical Chemistry, 846, Article ID: 113142. [Google Scholar] [CrossRef]
|
|
[22]
|
Qian, M., Cui, S., Jiang, D., Zhang, L. and Du, P. (2017) Highly Efficient and Stable Water-Oxidation Electrocatalysis with a Very Low Overpotential Using FeNiP Substitutional-Solid-Solution Nanoplate Arrays. Advanced Materials, 29, Article ID: 1704075. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
He, P., Yu, X.Y. and Lou, X.W. (2017) Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie International Edition in English, 56, 3897-3900. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Man, H.W., Tsang, C.S., Li, M.M., Mo, J., Huang, B., Lee, L.Y.S., Leung, Y.C., Wong, K.Y. and Tsang, S.C.E. (2018) Tailored Transition Metal-Doped Nickel Phosphide Nanoparticles for the Electrochemical Oxygen Evolution Reaction (OER). Chemical Communications (Cambridge), 54, 8630-8633. [Google Scholar] [CrossRef]
|
|
[25]
|
Liang, X., Zheng, B., Chen, L., Zhang, J., Zhuang, Z. and Chen, B. (2017) MOF-Derived Formation of Ni2P-CoP Bimetallic Phosphides with Strong Interfacial Effect toward Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 9, 23222-23229. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sheng, J.P., Wang, L.Q., Deng, L., Zhang, M., He, H.C., Zeng, K., Tang, F.Y. and Liu, Y.N. (2018) MOF-Templated Fabrication of Hollow Co4N@N-Doped Carbon Porous Nanocages with Superior Catalytic Activity. ACS Applied Materials & Interfaces, 10, 7191-7200. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xia, C., Jiang, Q., Zhao, C., Hedhili, M.N. and Alshareef, H.N. (2016) Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications. Advanced Materials, 28, 77-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Stern, L.-A., Feng, L., Song, F. and Hu, X. (2015) Ni2P as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles. Energy & Environmental Science, 8, 2347-2351. [Google Scholar] [CrossRef]
|