[1]
|
Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K. and Swarup, R. (2015) New Insights into Root Gravitropic Signalling. Journal of Experimental Botany, 66, 2155-2165. https://doi.org/10.1093/jxb/eru515
|
[2]
|
Malone, M. (1994) Wound-Induced Hydraulic Signals and Stimulus Transmission in Mimosa pudica L. The New Phytologist, 128, 49-56. https://doi.org/10.1111/j.1469-8137.1994.tb03985.x
|
[3]
|
Roy, R. and Bassham, D.C. (2014) Root Growth Movements: Waving and Skewing. Plant Science, 221-222, 42-47.
https://doi.org/10.1016/j.plantsci.2014.01.007
|
[4]
|
Buer, C.S., Wasteneys, G.O. and Masle, J. (2003) Ethylene Modulates Root-Wave Responses in Arabidopsis. Plant Physiology, 132, 1085-1096. https://doi.org/10.1104/pp.102.019182
|
[5]
|
Migliaccio, F. and Piconese, S. (2001) Spiralizations and Tropisms in Arabidopsis Roots. Trends in Plant Science, 6, 561-565. https://doi.org/10.1016/S1360-1385(01)02152-5
|
[6]
|
Paul, A.-L., Amalfitano, C.E. and Ferl, R.J. (2012) Plant Growth Strategies Are Remodeled by Spaceflight. BMC Plant Biology, 12, Article No. 232. https://doi.org/10.1186/1471-2229-12-232
|
[7]
|
Thompson, M.V. and Holbrook, N.M. (2004) Root-Gel Interactions and the Root Waving Behavior of Arabidopsis. Plant Physiology, 135, 1822-1837. https://doi.org/10.1104/pp.104.040881
|
[8]
|
Zhang, Z., van Ophem, D., Chelakkot, R., et al. (2022) A Mechano-Sensing Mechanism for Waving in Plant Roots. Scientific Reports, 12, Article No. 9635. https://doi.org/10.1038/s41598-022-14093-1
|
[9]
|
Piconese, S., Tronelli, G., Pippia, P., et al. (2003) Chiral and Non-Chiral Nutations in Arabidopsis Roots Grown on the Random Positioning Machine. Journal of Experimental Botany, 54, 1909-1918. https://doi.org/10.1093/jxb/erg206
|
[10]
|
Li, E., Wang, G., Zhang, Y.-L., Kong, Z. and Li, S. (2020) FERONIA Mediates Root Nutating Growth. The Plant Journal, 104, 1105-1116. https://doi.org/10.1111/tpj.14984
|
[11]
|
Migliaccio, F., Tassone, P. and Fortunati, A. (2013) Circumnutation as an Autonomous Root Movement in Plants. American Journal of Botany, 100, 4-13. https://doi.org/10.3732/ajb.1200314
|
[12]
|
Migliaccio, F., Fortunati, A. and Tassone, P. (2009) Arabidopsis Root Growth Movements and Their Symmetry: Progress and Problems Arising from Recent Work. Plant Signaling & Behavior, 4, 183-190.
https://doi.org/10.4161/psb.4.3.7959
|
[13]
|
Massa, G.D. and Gilroy, S. (2003) Touch Modulates Gravity Sensing to Regulate the Growth of Primary Roots of Arabidopsis thaliana. The Plant Journal, 33, 435-445. https://doi.org/10.1046/j.1365-313X.2003.01637.x
|
[14]
|
Lee, H.-J., Kim, H.-S., Park, J.M., Cho, H.S. and Jeon, J.H. (2020) PIN-Mediated Polar Auxin Transport Facilitates Root-Obstacle Avoidance. The New Phytologist, 225, 1285-1296. https://doi.org/10.1111/nph.16076
|
[15]
|
Braam, J. and Davis, R.W. (1990) Rain-, Wind-, and Touch-Induced Expression of Calmodulin and Calmodulin-Related Genes in Arabidopsis. Cell, 60, 357-364. https://doi.org/10.1016/0092-8674(90)90587-5
|
[16]
|
Lee, D., Polisensky, D.H. and Braam, J. (2005) Genome-Wide Identification of Touch- and Darkness-Regulated Arabidopsis Genes: A Focus on Calmodulin-Like and XTH Genes. The New Phytologist, 165, 429-444.
https://doi.org/10.1111/j.1469-8137.2004.01238.x
|
[17]
|
Ling, V., Perera, I. and Zielinski, R.E. (1991) Primary Structures of Arabidopsis Calmodulin Isoforms Deduced from the Sequences of cDNA Clones. Plant Physiology, 96, 1196-1202. https://doi.org/10.1104/pp.96.4.1196
|
[18]
|
Perera, I.Y. and Zielinski, R.E. (1992) Structure and Expression of the Arabidopsis CaM-3 Calmodulin Gene. Plant Molecular Biology, 19, 649-664. https://doi.org/10.1007/BF00026791
|
[19]
|
Jensen, G.S., Fal, K., Hamant, O. and Haswell, E.S. (2017) The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses. Journal of Experimental Botany, 68, 499-511. https://doi.org/10.1093/jxb/erw439
|
[20]
|
Shih, H.-W., Miller, N.D., Dai, C., Spalding, E.P. and Monshausen, G.B. (2014) The Receptor-Like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings. Current Biology, 24, 1887-1892.
https://doi.org/10.1016/j.cub.2014.06.064
|
[21]
|
Santner, A.A. and Watson, J.C. (2006) The WAG1 and WAG2 Protein Kinases Negatively Regulate Root Waving in Arabidopsis. The Plant Journal, 45, 752-764. https://doi.org/10.1111/j.1365-313X.2005.02641.x
|
[22]
|
Oyama, T., Shimura, Y. and Okada, K. (1997) The Arabidopsis HY5 Gene Encodes a bZIP Protein That Regulates Stimulus-Induced Development of Root and Hypocotyl. Genes & Development, 11, 2983-2995.
https://doi.org/10.1101/gad.11.22.2983
|
[23]
|
Oliva, M. and Dunand, C. (2007) Waving and Skewing: How Gravity and the Surface of Growth Media Affect Root Development in Arabidopsis. The New Phytologist, 176, 37-43. https://doi.org/10.1111/j.1469-8137.2007.02184.x
|
[24]
|
Hobe, M., Müller, R., Grünewald, M., Brand, U. and Simon, R. (2003) Loss of CLE40, a Protein Functionally Equivalent to the Stem Cell Restricting Signal CLV3, Enhances Root Waving in Arabidopsis. Development Genes and Evolution, 213, 371-381. https://doi.org/10.1007/s00427-003-0329-5
|
[25]
|
Rutherford, R. and Masson, P.H. (1996) Arabidopsis thaliana skumutant Seedlings Show Exaggerated Surface-Dependent Alteration in Root Growth Vector. Plant Physiology, 111, 987-998. https://doi.org/10.1104/pp.111.4.987
|
[26]
|
Sedbrook, J.C., Carroll, K.L., Hung, K.F., Masson, P.H. and Somerville, C.R. (2002) The Arabidopsis SKU5 Gene Encodes an Extracellular Glycosyl Phosphatidylinositol-Anchored Glycoprotein Involved in Directional Root Growth. Plant Cell, 14, 1635-1648. https://doi.org/10.1105/tpc.002360
|
[27]
|
Sedbrook, J.C., Ehrhardt, D.W., Fisher, S.E., Scheible, W.-R. and Somerville, C.R. (2004) The Arabidopsis SKU6/ SPIRAL1 Gene Encodes a Plus End-Localized Microtubule-Interacting Protein Involved in Directional Cell Expansion. Plant Cell, 16, 1506-1520. https://doi.org/10.1105/tpc.020644
|
[28]
|
Abe, T., Thitamadee, S. and Hashimoto, T. (2004) Microtubule Defects and Cell Morphogenesis in the lefty1lefty2 Tubulin Mutant of Arabidopsis Thaliana. Plant and Cell Physiology, 45, 211-220.
https://doi.org/10.1093/pcp/pch026
|
[29]
|
Pandey, S., Monshausen, G.B., Ding, L. and Assmann, S.M. (2008) Regulation of Root-Wave Response by Extra Large and Conventional G Proteins in Arabidopsis thaliana. The Plant Journal, 55, 311-322.
https://doi.org/10.1111/j.1365-313X.2008.03506.x
|
[30]
|
Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., et al. (2003) WVD2 and WDL1 Modulate Helical Organ Growth and Anisotropic Cell Expansion in Arabidopsis. Plant Physiology, 131, 493-506. https://doi.org/10.1104/pp.015966
|
[31]
|
Smertenko, A., Clare, S.J., Effertz, K., et al. (2021) A Guide to Plant TPX2-Like and WAVE-DAMPENED2-Like Proteins. Journal of Experimental Botany, 72, 1034-1045. https://doi.org/10.1093/jxb/eraa513
|
[32]
|
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T. and Kropf, D.L. (2008) The Microtubule plus-End Binding Protein EB1 Functions in Root Responses to Touch and Gravity Signals in Arabidopsis. Plant Cell, 20, 396-410.
https://doi.org/10.1105/tpc.107.056846
|
[33]
|
Swarbreck, S.M., Guerringue, Y., Matthus, E., Jamieson, F.J.C. and Davies, J.M. (2019) Impairment in Karrikin but Not Strigolactone Sensing Enhances Root Skewing in Arabidopsis thaliana. The Plant Journal, 98, 607-621.
https://doi.org/10.1111/tpj.14233
|
[34]
|
Schultz, E.R., Zupanska, A.K., Sng, N.J., Paul, A.-L. and Ferl, R.J. (2017) Skewing in Arabidopsis Roots Involves Disparate Environmental Signaling Pathways. BMC Plant Biology, 17, Article No. 31.
https://doi.org/10.1186/s12870-017-0975-9
|
[35]
|
Saini, S., Sharma, I., Kaur, N. and Pati, P.K. (2013) Auxin: A Master Regulator in Plant Root Development. Plant Cell Reports, 32, 741-757. https://doi.org/10.1007/s00299-013-1430-5
|
[36]
|
Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J. and Muday, G.K. (2000) Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis. Plant Physiology, 122, 481-490. https://doi.org/10.1104/pp.122.2.481
|
[37]
|
Vanneste, S. and Friml, J. (2009) Auxin: A Trigger for Change in Plant Development. Cell, 136, 1005-1016.
https://doi.org/10.1016/j.cell.2009.03.001
|
[38]
|
Kleine-Vehn, J. and Friml, J. (2008) Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development. Annual Review of Cell and Developmental Biology, 24, 447-473.
https://doi.org/10.1146/annurev.cellbio.24.110707.175254
|
[39]
|
Jacobsen, A.G.R., Jervis, G., Xu, J., Topping, J.F. and Lindsey, K. (2021) Root Growth Responses to Mechanical Impedance Are Regulated by a Network of ROS, Ethylene and Auxin Signalling in Arabidopsis. The New Phytologist, 231, 225-242. https://doi.org/10.1111/nph.17180
|
[40]
|
Santisree, P., Nongmaithem, S., Sreelakshmi, Y., Ivanchenko, M. and Sharma, R. (2012) The Root as a Drill: An Ethylene-Auxin Interaction Facilitates Root Penetration in Soil. Plant Signaling & Behavior, 7, 151-156.
https://doi.org/10.4161/psb.18936
|
[41]
|
Del Bianco, M. and Kepinski, S. (2021) How Plants Get Round Problems: New Insights into the Root Obstacle Avoidance Response. The New Phytologist, 231, 8-10. https://doi.org/10.1111/nph.17419
|
[42]
|
Taylor, I., Lehner, K., McCaskey, E., et al. (2021) Mechanism and Function of Root Circumnutation. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018940118.
https://doi.org/10.1073/pnas.2018940118
|
[43]
|
Zhao, H., Duan, K.-X., Ma, B., et al. (2020) Histidine Kinase MHZ1/OsHK1 Interacts with Ethylene Receptors to Regulate Root Growth in Rice. Nature Communications, 11, Article No. 518.
https://doi.org/10.1038/s41467-020-14313-0
|
[44]
|
Kushwah, S., Jones, A.M. and Laxmi, A. (2011) Cytokinin Interplay with Ethylene, Auxin, and Glucose Signaling Controls Arabidopsis Seedling Root Directional Growth. Plant Physiology, 156, 1851-1866.
https://doi.org/10.1104/pp.111.175794
|
[45]
|
Zhou, Z.-Y., Zhang, C.-G., Wu, L., et al. (2011) Functional Characterization of the CKRC1/TAA1 Gene and Dissection of Hormonal Actions in the Arabidopsis Root. The Plant Journal, 66, 516-527.
https://doi.org/10.1111/j.1365-313X.2011.04509.x
|
[46]
|
Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H. and Gilroy, S. (2009) Ca2+ Regulates Reactive Oxygen Species Production and pH during Mechanosensing in Arabidopsis Roots. Plant Cell, 21, 2341-2356.
https://doi.org/10.1105/tpc.109.068395
|
[47]
|
Vanneste, S. and Friml, J. (2013) Calcium: The Missing Link in Auxin Action. Plants, 2, 650-675.
https://doi.org/10.3390/plants2040650
|
[48]
|
Gillespie, P.G. and Walker, R.G. (2001) Molecular Basis of Mechanosensory Transduction. Nature, 413, 194-202.
https://doi.org/10.1038/35093011
|
[49]
|
Legué, V., Blancaflor, E., Wymer, C., et al. (1997) Cytoplasmic Free Ca2+ in Arabidopsis Roots Changes in Response to Touch but Not Gravity. Plant Physiology, 114, 789-800. https://doi.org/10.1104/pp.114.3.789
|
[50]
|
Nakagawa, Y., Katagiri, T., Shinozaki, K., et al. (2007) Arabidopsis Plasma Membrane Protein Crucial for Ca2+ Influx and Touch Sensing in Roots. Proceedings of the National Academy of Sciences of the United States of America, 104, 3639-3644. https://doi.org/10.1073/pnas.0607703104
|
[51]
|
Yamanaka, T., Nakagawa, Y., Mori, K., et al. (2010) MCA1 and MCA2 That Mediate Ca2+ Uptake Have Distinct and Overlapping Roles in Arabidopsis. Plant Physiology, 152, 1284-1296. https://doi.org/10.1104/pp.109.147371
|
[52]
|
Tsugama, D., Liu, S., Fujino, K. and Takano, T. (2018) Calcium Signalling Regulates the Functions of the bZIP Protein VIP1 in Touch Responses in Arabidopsis thaliana. Annals of Botany, 122, 1219-1229.
https://doi.org/10.1093/aob/mcy125
|
[53]
|
Tsugama, D., Liu, S. and Takano, T. (2016) VIP1 Is Very Important/Interesting Protein 1 Regulating Touch Responses of Arabidopsis. Plant Signaling &Behavior, 11, e1187358. https://doi.org/10.1080/15592324.2016.1187358
|
[54]
|
Tsugama, D., Liu, S. and Takano, T. (2016) The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots. Plant Physiology, 171, 1355-1365. https://doi.org/10.1104/pp.16.00256
|
[55]
|
Tsugama, D., Liu, S. and Takano, T. (2014) Analysis of Functions of VIP1 and Its Close Homologs in Osmosensory Responses of Arabidopsis thaliana. PLOS ONE, 9, e103930. https://doi.org/10.1371/journal.pone.0103930
|
[56]
|
Moschou, P.N., Gutierrez-Beltran, E., Bozhkov, P.V. and Smertenko, A. (2016) Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Developmental Cell, 37, 350-361.
https://doi.org/10.1016/j.devcel.2016.04.015
|
[57]
|
Galva, C., Kirik, V., Lindeboom, J.J., et al. (2014) The Microtubule plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in Arabidopsis. Plant Cell, 26, 4409-4425.
https://doi.org/10.1105/tpc.114.131482
|
[58]
|
Ishida, T., Kaneko, Y., Iwano, M. and Hashimoto, T. (2007) Helical Microtubule Arrays in a Collection of Twisting Tubulin Mutants of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 8544-8549. https://doi.org/10.1073/pnas.0701224104
|
[59]
|
Roy, R. and Bassham, D.C. (2017) TNO1, a TGN-Localized SNARE-Interacting Protein, Modulates Root Skewing in Arabidopsis thaliana. BMC Plant Biology, 17, Article No. 73. https://doi.org/10.1186/s12870-017-1024-4
|
[60]
|
Gleeson, L., Squires, S. and Bisgrove, S.R. (2012) The Microtubule Associated Protein END BINDING 1 Represses Root Responses to Mechanical Cues. Plant Science, 187, 1-9. https://doi.org/10.1016/j.plantsci.2012.01.010
|