|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
|
|
[3]
|
Li, S., Young, K.H. and Medeiros, L.J. (2018) Diffuse Large B-Cell Lymphoma. Pathology, 50, 74-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
王韦婷, 徐卫. 弥漫大B细胞淋巴瘤治疗进展[J]. 白血病. 淋巴瘤, 2019, 28(12): 719-723.
|
|
[5]
|
肖远喆, 张清媛. 弥漫性大B细胞淋巴瘤免疫治疗进展[J]. 现代肿瘤医学, 2022, 30(18): 3441-3444.
|
|
[6]
|
Kersten, M.J., Spanjaart, A.M. and Thieblemont, C. (2020) CD19-Directed CAR T-Cell Therapy in B-Cell NHL. Current Opinion in Oncology, 32, 408-417. [Google Scholar] [CrossRef]
|
|
[7]
|
Crump, M., Neelapu, S.S., Farooq, U., et al. (2017) Out-comes in Refractory Diffuse Large B-Cell Lymphoma: Results from the International SCHOLAR-1 Study. Blood, 130, 1800-1808. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Roberts, Z.J., Better, M., Bot, A., et al. (2018) Axicabtagene Ciloleucel, a First-in-Class CAR T Cell Therapy for Aggressive NHL. Leukemia & Lymphoma, 59, 1785-1796. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, K., Wei, G. and Liu, D. (2012) CD19: A Biomarker for B Cell Development, Lymphoma Diagnosis and Therapy. Experimental Hematology & Oncology, 1, Arti-cle No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Neelapu, S.S., Locke, F.L., Bartlett, N.L., et al. (2017) Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-cell Lymphoma. New England Journal of Medicine, 377, 2531-2544. [Google Scholar] [CrossRef]
|
|
[11]
|
Locke, F.L., Ghobadi, A., Jacobson, C.A., et al. (2019) Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Mul-ticentre, Phase 1-2 Trial. The Lancet Oncology, 20, 31-42. [Google Scholar] [CrossRef]
|
|
[12]
|
Schuster, S.J., Tam, C.S., Borchmann, P., et al. (2021) Long-Term Clinical Outcomes of Tisagenlecleucel in Patients with Relapsed or Refractory Aggressive B-Cell Lympho-mas (JULIET, a Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 22, 1403-1415. [Google Scholar] [CrossRef]
|
|
[13]
|
Quintás-Cardama, A. (2018) CD19 Directed CAR T Cell Therapy in Diffuse Large B-Cell Lymphoma. Oncotarget, 9, 29843-29844. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Abramson, J.S., Palomba, M.L., Gordon, L.I., et al. (2020) Li-socabtagene Maraleucel for Patients with Relapsed Or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. The Lancet, 396, 839-852. [Google Scholar] [CrossRef]
|
|
[15]
|
Salles, G., Spin, P., Liu, F.F., et al. (2021) Indirect Treatment Comparison of Liso-Cel vs. Salvage Chemotherapy in Diffuse Large B-Cell Lymphoma: TRANSCEND vs. SCHOLAR-1. Advances in Therapy, 38, 3266-3280. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Maloney, D.G., Kuruvilla, J., Liu, F.F., et al. (2021) Match-ing-Adjusted Indirect Treatment Comparison of Liso-Cel versus Axi-Cel in Relapsed or Refractory Large B Cell Lym-phoma. Journal of Hematology & Oncology, 14, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Horton, H.M., Bernett, M.J., Pong, E., et al. (2008) Potent in Vitro and in Vivo Activity of an Fc-Engineered Anti-CD19 Monoclonal Antibody against Lymphoma and Leukemia. Cancer Research, 68, 8049-8057. [Google Scholar] [CrossRef]
|
|
[18]
|
Kellner, C., Zhukovsky, E.A., Pötzke, A., et al. (2013) The Fc-Engineered CD19 Antibody MOR208 (XmAb5574) Induces Natural Killer Cell-Mediated Lysis of Acute Lympho-blastic Leukemia Cells from Pediatric and Adult Patients. Leukemia, 27, 1595-1598. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Abramson, J.S., Palomba, M.L., Gordon, L.I., et al. (2017) High Dura-ble CR Rates in Relapsed/Refractory (R/R) Aggressive B-NHL Treated with the CD19-Directed CAR T Cell Product JCAR017 (TRANSCEND NHL 001): Defined Composition Allows for Dose-Finding and Definition of Pivotal Cohort. Blood, 130, Article No. 581.
|
|
[20]
|
Ying, Z., Yang, H., Guo, Y., et al. (2021) Relmacabtagene Autoleucel (relma-cel) CD19 CAR-T Therapy for Adults with Heavily Pretreated Relapsed/Refractory Large B-Cell Lymphoma in China. Can-cer Medicine, 10, 999-1011. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ying, Z., Xu, P., Hao, M., et al. (2019) Cellular Kinetics and An-ti-Therapeutic Antibody in Relapsed/Refractory B-NHL Patients Treated with JWCAR029. Blood, 134, Article No. 4083. [Google Scholar] [CrossRef]
|
|
[22]
|
Riedell, P.A. and Bishop, M.R. (2020) Safety and Efficacy of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphomas. Therapeutic Advances in Hematology, 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lee, D.W., Gardner, R., Porter, D.L., et al. (2014) Current Con-cepts in the Diagnosis and Management of Cytokine Release Syndrome. Blood: The Journal of the American Society of Hematology, 124, 188-195.
|
|
[24]
|
Bonifant, C.L., Jackson, H.J., Brentjens, R.J., et al. (2016) Toxicity and Management in CAR T-Cell Therapy. Molecular Therapy—Oncolytics, 3, Article No. 16011. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Maude, S.L., Teachey, D.T., Porter, D.L., et al. (2015) CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Blood: The Journal of the American So-ciety of Hematology, 125, 4017-4023. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gardner, R., Leger, K.J., Annesley, C.E., et al. (2016) De-creased Rates of Severe CRS Seen with Early Intervention Strategies for CD19 CAR-T Cell Toxicity Management. Blood, 128, Article No. 586. [Google Scholar] [CrossRef]
|
|
[27]
|
Lee, D.W., Santomasso, B.D., Locke, F.L., et al. (2019) ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation, 25, 625-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gust, J., Hay, K.A., Hanafi, L.A., et al. (2017) Endothelial Activa-tion and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells Neu-rotoxicity Associated with CD19 CAR-T Cells. Cancer Discovery, 7, 1404-1419. [Google Scholar] [CrossRef]
|