|
[1]
|
Siege, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Siege, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pediconi, F. and Galati, F. (2020) Breast Cancer Screening Programs: Does One Risk Fit All? Quantitative Imaging in Medicine and Surgery, 10, 886-890. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Scimeca, M., et al. (2021) Breast Cancer Metastasis to Bone: From Epithelial to Mesenchymal Transition to Breast Osteoblast-Like Cells. Seminars in Cancer Biology, 72, 155-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, Z., et al. (2020) Novel Prognostic Nomograms for Female Patients with Breast Cancer and Bone Metastasis at Presentation. Annals of Translational Medicine, 8, 197-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Thanopoulou, E., et al. (2020) Therapeutic Strategies for the Man-agement of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Positive (HR+/HER2+) Breast Cancer: A Review of the Current Literature. Cancers, 12, Article No. 3317. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Invernizzi, M., Kim, J. and Fusco, N. (2020) Editorial: Quality of Life in Breast Cancer Patients and Survivors. Frontiers in Oncology, 10, Article 620574. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Baek, Y.-H., et al. (2019) Incidence of Skeletal-Related Events in Patients with Breast or Prostate Cancer-Induced Bone Metastasis or Multiple Myeloma: A 12-Year Longitudinal Nation-wide Healthcare Database Study. Cancer Epidemiology, 61, 104-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lee, Y.S. and Dutta, A. (2009) MicroRNAs in Cancer. Annual Review of Pathology: Mechanisms of Disease, 4, 199-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, B., et al. (2020) MiRNA-Based Biomarkers, Therapies, and Resistance in Cancer. International Journal of Biological Sciences, 16, 2628-2647. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Puppo, M., Taipaleenmäki, H., Hesse, E. and Clézardin, P. (2021) Non-Coding RNAs in Bone Remodelling and Bone Metastasis: Mechanisms of Action and Translational Relevance. British Journal of Pharmacology, 178, 1936-1954. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Puppo, M., Valluru, M.K. and Clézardin, P. (2021) MicroRNAs and Their Roles in Breast Cancer Bone Metastasis. Current Osteoporosis Reports, 19, 256-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Haider, M., Smit, D.J. and Taipaleenmäki, H. (2022) Mi-croRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers, 14, Article No. 729. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Anderson, D.M., et al. (1997) A Homologue of the TNF Receptor and Its Ligand Enhance T-Cell Growth and Dendritic-Cell Function. Nature, 390, 175-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kong, Y.-Y., et al. (1999) OPGL Is a Key Regulator of Osteoclastogenesis, Lymphocyte Development and Lymph-Node Organogenesis. Nature, 397, 315-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Udagawa, N., et al. (2021) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
O’Brien, E.A., Williams, J.H.H. and Marshall, M.J. (2001) Os-teoprotegerin is Produced When Prostaglandin Synthesis Is Inhibited Causing Osteoclasts to Detach from the Surface of Mouse Parietal Bone and Attach to the Endocranial Membrane. Bone, 28, 208-214. [Google Scholar] [CrossRef]
|
|
[18]
|
Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jones, D.H., et al. (2006) Regulation of Cancer Cell Migration and Bone Metastasis by RANKL. Nature, 440, 692-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tsubaki, M., et al. (2013) Activation of NF-κB by the RANKL/RANK System Up-Regulates Snail and Twist Expressions and Induces Epithelial-to-Mesenchymal Transition in Mammary Tu-mor Cell Lines. Journal of Experimental & Clinical Cancer Research, 32, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lánczky, A., et al. (2016) MiRpower: A Web-Tool to Validate Sur-vival-Associated miRNAs Utilizing Expression Data from 2178 Breast Cancer Patients. Breast Cancer Research and Treatment, 160, 439-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, L., Teruya-Feldstein, J. and Weinberg, R.A. (2007) Tumour Invasion and Metastasis Initiated by microRNA-10b in Breast Cancer. Nature, 449, 682-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xu, S.-B., Fan, R.-H., Qin, X. and Han, R.-M. (2021) MicroRNA Prog-nostic Signature for Postoperative Success of Metastatic Orthopedic Cancers: Implications for Precision Microsurgery. Frontiers in Cell and Developmental Biology, 9, Article 704505. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Croset, M., et al. (2014) TWIST1 Expression in Breast Cancer Cells Facilitates Bone Metastasis Formation. Journal of Bone and Mineral Research, 29, 1886-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
El-Haibi, C.P., et al. (2012) Critical Role for Lysyl Oxidase in Mesenchy-mal Stem Cell-Driven Breast Cancer Malignancy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17460-17465. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Qian, B., et al. (2009) High miR-21 Expression in Breast Cancer Associated with Poor Disease-Free Survival in Early Stage Disease and High TGF-β1. Breast Cancer Research and Treatment, 117, 131-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tili, E., Michaille, J.J. and Croce, C.M. (2013) MicroRNAs Play a Central Role in Molecular Dysfunctions Linking Inflammation with Cancer. Immunological Reviews, 253, 167-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shi, C., et al. (2016) Novel Evidence for an Oncogenic Role of mi-croRNA-21 in Colitis-Associated Colorectal Cancer. Gut, 65, 1470-1481. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Krichevsky, A.M. and Gabriely, G. (2009) MiR-21: A Small Multi-Faceted RNA. Journal of Cellular and Molecular Medicine, 13, 39-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, Q., et al. 2020) Lung Cancer Cells Derived Circulat-ing miR-21 Promotes Differentiation of Monocytes into Osteoclasts. OncoTargets and Therapy, 13, 2643-2656. [Google Scholar] [CrossRef]
|
|
[31]
|
Sugatani, T., Vacher, J. and Hruska, K.A. (2011) A microRNA Ex-pression Signature of Osteoclastogenesis. Blood, 117, 3648-3657. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pan, M., et al. (2021) Knockdown of ALDH1A3 Reduces Breast Cancer Stem Cell Marker CD44 via the miR-7- TGFBR2-Smad3-CD44 Regulatory Axis. Experimental and Therapeutic Medicine, 22, Article No. 1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhao, P., et al. (2016) The CD44s Splice Isoform Is a Central Media-tor for Invadopodia Activity. Journal of Cell Science, 129, 1355-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, H., et al. (2019) CD44 Splice Isoform Switching Determines Breast Cancer Stem Cell State. Genes & Development, 33, 166-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
崔立群, 等. miR-7对乳腺癌细胞骨转移的影响[J]. 广东医学, 2015, 36(7): 993-996.
|
|
[36]
|
Li, N., et al. (2017) MiR-106b and miR-93 Regulate Cell Progression by Suppression of PTEN via PI3K/Akt Pathway in Breast Cancer. Cell Death & Dis-ease, 8, e2796. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
倪小健, 张宏伟, 朱玮. miRNA-106b失活可通过上调MMP2表达参与乳腺癌骨转移[J]. 中国临床医学, 2017, 24(5): 673-680.
|
|
[38]
|
Ławicki, S., Zajkowska, M., Głażewska, E.K., Będkowska, G.E. and Szmitkowski, M. (2017) Plasma Levels and Diagnostic Utility of VEGF, MMP-2 and TIMP-2 in the Diagnostics of Breast Cancer Patients. Biomarkers, 22, 157-164. [Google Scholar] [CrossRef]
|
|
[39]
|
Martin, T.J. and Sims, N.A. (2015) RANKL/OPG; Critical Role in Bone Physiology. Reviews in Endocrine and Metabolic Disorders, 16, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
单臻, 等. miR-223通过IGF-1R及NFIA调控乳腺癌细胞及破骨细胞功能的研究[J]. 中华普通外科学文献(电子版), 2020, 14(6): 406-410.
|
|
[41]
|
Ayub, A., Yip, W.K. and Seow, H.F. (2015) Dual Treatments Targeting IGF-1R, PI3K, mTORC or MEK Synergize to Inhibit Cell Growth, Induce Apoptosis, and Arrest Cell Cycle at G1 Phase in MDA-MB-231 Cell Line. Biomedicine & Pharmacotherapy, 75, 40-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shan, Z., et al. (2015) An Endocrine Genetic Signal between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. Journal of the American College of Cardiology, 65, 2526-2537. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Costa, R., Han, H.S. and Gradishar, W.J. (2018) Targeting the PI3K/AKT/mTOR Pathway in Triple-Negative Breast Cancer: A Review. Breast Cancer Research and Treatment, 169, 397-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Savci-Heijink, C.D., et al. (2015) Retrospective Analy-sis of Metastatic Behaviour of Breast Cancer Subtypes. Breast Cancer Research and Treatment, 150, 547-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Han, H.H., et al. (2016) Estrogen Receptor Status Predicts Late-Onset Skeletal Recurrence in Breast Cancer Patients. Medicine, 95, e2909. [Google Scholar] [CrossRef]
|
|
[46]
|
Kort, E.J., et al. (2008) The E2F3-Oncomir-1 Axis Is Acti-vated in Wilms’ Tumor. Cancer Research, 68, 4034-4038. [Google Scholar] [CrossRef]
|
|
[47]
|
Ouchida, M., et al. (2012) Novel Direct Targets of miR-19a Identified in Breast Cancer Cells by A Quantitative Proteomic Approach. PLOS ONE, 7, e44095. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D. and Robey, P.G. (1991) Expression of Bone Sialoprotein (BSP) in Developing Human Tissues. Calcified Tissue Internation-al, 49, 421-426. [Google Scholar] [CrossRef]
|
|
[49]
|
Wu, K., et al. (2021) Exosomal miR-19a and IBSP Co-operate to Induce Osteolytic Bone Metastasis of Estrogen Receptor-Positive Breast Cancer. Nature Communications, 12, Article No. 5196. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Peng, Y., Huang, D., Ma, K., Deng, X. and Shao, Z. (2019) MiR-19a as a Prognostic Indicator for Cancer Patients: A Meta-Analysis. Bioscience Reports, 39, Article ID: BSR20182370. [Google Scholar] [CrossRef]
|
|
[51]
|
Wellner, U., et al. (2009) The EMT-Activator ZEB1 Promotes Tumorigenicity by Repressing Stemness-Inhibiting microRNAs. Nature Cell Biology, 11, 1487-1495. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Watson, K.L., Jones, R.A., Bruce, A. and Moorehead, R.A. (2018) The miR-200b/200a/429 Cluster Prevents Metastasis and Induces Dormancy in a Murine Claudin-Low Mammary Tumor Cell Line. Experimental Cell Research, 369, 17-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ye, X., et al. (2015) Distinct EMT Programs Control Normal Mammary Stem Cells and Tumour-Initiating Cells. Nature, 525, 256-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ye, Z.-B., et al. (2015) MiR-429 Inhibits Migration and Invasion of Breast Cancer Cells in Vitro. International Journal of Oncology, 46, 531-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhang, X., et al. (2020) MicroRNA-429 Inhibits Bone Metastasis in Breast Cancer by Regulating CrkL and MMP-9. Bone, 130, Article ID: 115139. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kim, K., et al. (2016) MMP-9 Facilitates Selective Proteolysis of the Histone H3 Tail at Genes Necessary for Proficient Osteoclastogenesis. Genes & Development, 30, 208-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Gu, J.-H., et al. (2014) Regulation of Matrix Metalloproteinase-9 Protein Expression by 1α,25-(OH)2D3 during Osteoclast Differentiation. Journal of Veterinary Science, 15, 133-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lin, F., et al. (2015) CRKL Promotes Lung Cancer Cell Invasion through ERK-MMP9 Pathway. Molecular Carcinogenesis, 54, E35-E44. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liu, J., et al. (2017) Osteoclastic miR-214 Targets TRAF3 to Contribute to Osteolytic Bone Metastasis of Breast Cancer. Scientific Reports, 7, Article No. 40487. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Li, D., et al. (2016) Osteoclast-Derived Exosomal miR-214-3p Inhibits Os-teoblastic Bone Formation. Nature Communications, 7, Article No. 10872. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Orso, F., et al. (2016) MiR-214 and miR-148b Targeting Inhibits Dis-semination of Melanoma and Breast Cancer. Cancer Research, 76, 5151-5162. [Google Scholar] [CrossRef]
|
|
[62]
|
Sun, G., Liu, Y., Wang, K. and Xu, Z. (2015) MiR-506 Regulates Breast Cancer Cell Metastasis by Targeting IQGAP1. International Journal of Oncology, 47, 1963-1970. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wang, X.-X., et al. (2018) MiR-506 Attenuates Methylation of lncRNA MEG3 to Inhibit Migration and Invasion of Breast Cancer Cell Lines via Targeting SP1 and SP3. Cancer Cell Interna-tional, 18, Article No. 171. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Yao, Z., Getting, S.J. and Locke, I.C. (2021) Regulation of TNF-Induced Osteoclast Differentiation. Cells, 11, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
|