|
[1]
|
Yang, S., Verdaguer-Casadevall, A., Arnarson, L., et al. (2018) Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catalysis, 8, 4064-4081. [Google Scholar] [CrossRef]
|
|
[2]
|
Jiang, Y.Y., Ni, P.J., Chen, C.X., et al. (2018) Selective Elec-trochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, Article ID: 1801909. [Google Scholar] [CrossRef]
|
|
[3]
|
Yamanaka, I. and Murayama, T. (2008) Neutral H2O2 Synthesis by Electrolysis of Water and O2. Angewandte Chemie, 47, 1900-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xia, C., Xia, Y., Zhu, P., et al. (2019) Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte. Science, 366, 226-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xia, C., Back, S., Ringe, S., et al. (2020) Confined Local Oxygen gas Promotes Electrochemical Water Oxidation to Hydrogen Peroxide. Nature Catalysis, 3, 125-134. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, S., Chen, Z., Siahrostami, S., et al. (2018) Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 140, 7851-7859. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chang, Q., Zhang, P., Mostaghimi, A.H.B., et al. (2020) Promoting H2O2 Production via 2-Electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon. Nature Communications, 11, Article No. 2178. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Siahrostami, S., Verdaguer-Casadeval, A., Karamad, M., et al. (2013) Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nature Materials, 12, 1137-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zheng, Z.K., Yun, H.N., Wang, D.W., et al. (2016) Epi-taxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2O2 Production. Advanced Materials, 28, 9949-9955. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zou, L., Wei, Y., Hou, C., et al. (2021) Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications. Small, 17, Article ID: 2004809. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shen, R., Chen, W., Peng, Q., et al. (2019) High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem, 5, 2099-2110. [Google Scholar] [CrossRef]
|
|
[12]
|
Jung, E., Shin, H., Lee, B.H., et al. (2020) Atomic-Level Tuning of Co-N-C Catalyst for High-Performance Electrochemical H2O2 Production. Nature Materials, 19, 436-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, B.Q., Zhao, C.X., Liu, J.N., et al. (2019) Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx-C Sites and Oxygen Functional Groups in No-ble-Metal-Free Electrocatalysts. Advanced Materials, 31, Article ID: 1808173. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jiang, K., Back, S., Akey, A.J., et al. (2019) Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nature Communications, 10, Article No. 3997. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Oloman, C. and Watkinson, A.P. (1979) Hydrogen Peroxide Production in Trickle-Bed Electrochemical Reactors. Journal of Applied Electrochemistry, 9, 117-123. [Google Scholar] [CrossRef]
|
|
[16]
|
Sun, Y., Sinev, I., Ju, W., et al. (2018) Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 8, 2844-2856. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhao, K., Yan, S., Xie, Q., et al. (2018) Enhanced H2O2 Pro-duction by Selective Electrochemical Reduction of O2 on Fluorine-Doped Hierarchically Porous Carbon. Journal of Catalysis, 357, 118-126. [Google Scholar] [CrossRef]
|
|
[18]
|
Lu, Z., Chen, G., Siahrostami, S., et al. (2018) High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nature Catalysis, 1, 156-162. [Google Scholar] [CrossRef]
|
|
[19]
|
Zhu, J., Xiao, X., Zheng, K., et al. (2019) KOH-Treated Reduced Graphene Oxide: 100% Selectivity for H2O2 Electroproduction. Carbon, 153, 6-11. [Google Scholar] [CrossRef]
|
|
[20]
|
Park, J., Nabae, Y., Hayakawa, T., et al. (2014) Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catalysis, 4, 3749-3754. [Google Scholar] [CrossRef]
|
|
[21]
|
Liu, Y., Quan, X., Fan, X., et al. (2015) High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. Angewandte Chemie, 127, 6941-6945. [Google Scholar] [CrossRef]
|
|
[22]
|
Jing, L., Tang, C., Tian, Q., et al. (2021) Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Elec-trochemical H2O2 Production. ACS Applied Materials & Interfaces, 13, 39763-39771. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dong, K., Liang, J. and Wang, Y. (2021) Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. Angewandte Chemie, 60, 10583-10587. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Choi, C.H., Kim, M., Kwon, H.C., et al. (2016) Tuning Selectivity of Electrochemical Reactions by Atomically Dispersed Platinum Catalyst. Nature Communications, 7, Article No. 10922. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jirkovsky, J.S., Panas, I., Ahlberg, E., et al. (2011) Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H2O2 Production.. Journal of the American Chemical Society, 133, 19432-19441. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, S., Tak, Y.J., Kim, J., et al. (2017) Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catalysis, 7, 1301-1307. [Google Scholar] [CrossRef]
|
|
[27]
|
Tang, C., Jiao, Y., Shi, B., et al. (2020) Coordina-tion Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angewandte Chemie International Edition, 59, 9171-9176.
|
|
[28]
|
Wang, Y., Shi, R., Shang, L., et al. (2020) High Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Ni Single Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Hase Flow Cell. Angewandte Chemie, 59, 13057-13062. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gao, J., Yang, H.B., Huang, X., et al. (2020) Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem, 6, 658-674. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, J., Zhang, G., Jin, S., et al. (2020) Gra-phitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon, 163, 154-161. [Google Scholar] [CrossRef]
|
|
[31]
|
Chen, G., Liu, J., Li, Q., et al. (2019) A Direct H2O2 Production Based on Hollow Porous Carbon Sphere-Sulfur Nanocrystal Composites by Confinement Effect as Oxygen Reduction Electrocatalysts. Nano Research, 12, 2614-2622. [Google Scholar] [CrossRef]
|
|
[32]
|
Kim, H.W., Ross, M.B., Kornienko, N., et al. (2018) Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-Based Oxygen Reduction Electrocatalysts. Nature Catalysis, 1, 282-290. [Google Scholar] [CrossRef]
|
|
[33]
|
Han, L., Sun, Y., Li, S., et al. (2019) In-Plane Carbon Lat-tice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 9, 1283-1288. [Google Scholar] [CrossRef]
|
|
[34]
|
Sa, Y.J., Kim, J.H. and Joo, S.H. (2019) Active Edge Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Produc-tion. Angewandte Chemie International Edition, 58, 1100-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Iglesias, D., Giulliani, A., Melchionna, M., et al. (2018) N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem, 4, 106-123. [Google Scholar] [CrossRef]
|
|
[36]
|
张磊, 习海玲, 王琦, 等. “过氧化物/钼酸盐”体系对芥子气及其模拟剂消毒反应动力学与机理研究[D]: [硕士毕业论文]. 北京: 防化研究院, 2011: 1-62.
|
|
[37]
|
齐丽红. 固体二元过氧酸消毒剂的研究[D]: [博士毕业论文]. 北京: 防化学院, 2010: 1-120.
|
|
[38]
|
肖博仁. 过氧亚酰胺活化生成机制及消毒应用[D]: [硕士毕业论文]. 北京: 防化学院, 2021: 1-125.
|