|
[1]
|
Evangelou, K., Vasileiou, P.V.S., et al. (2023) Cellular Senescence and Cardiovascular Diseases: Moving to the “heart” of the Problem. Physiological Reviews, 103, 609-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Miwa, S., Kashyap, S., Chini, E. and von Zglinicki, T. (2022) Mitochondrial Dysfunction in Cell Senescence and Aging. Journal of Clinical Investigation, 132, e158447. [Google Scholar] [CrossRef]
|
|
[3]
|
Kowald, A., Passos, J.F. and Kirk-wood, T.B.L. (2020) On the Evolution of Cellular Senescence. Aging Cell, 19, e13270. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hernandez-Segura, A., Nehme, J. and Demaria, M. (2018) Hallmarks of Cellular Senescence. Trends in Cell Biology, 28, 436-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Roger, L., Tomas, F. and Gire, V. (2021) Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 22, Article 13173. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Otero-Albiol, D. and Carnero, A. (2021) Cellular Senescence or Stemness: Hypoxia Flips the Coin. Journal of Experimental & Clinical Cancer Research, 40, Ar-ticle No. 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gems, D. and Kern, C.C. (2022) Is “Cellular Se-nescence” a Misnomer? GeroScience, 44, 2461-2469. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ahmed, R., Reza, H.M., Shinohara, K. and Nakahata, Y. (2022) Cellular Senescence and Its Impact on the Circadian Clock. The Journal of Biochemistry, 171, 493-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, Y., Johnson, S.M., Fedoriw, Y., Rogers, A.B., Yuan, H., Krishna-murthy, J. and Sharpless, N.E. (2011) Expression of p16INK4a Prevents Cancer and Promotes Aging in Lymphocytes. Blood, 117, 3257-3267. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, J.Y., Souroullas, G.P., Diekman, B.O., Krishnamurthy, J., Hall, B.M., Sorrentino, J.A., Parker, J.S., Sessions, G.A., Gudkov, A.V. and Sharpless, N.E. (2019) Cells Exhibiting Strong p16INK4a Promoter Activation in Vivo Display Features of Senescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 2603-2611. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, D., Borsa, M. and Simon, A.K. (2021) Hallmarks and Detec-tion Techniques of Cellular Senescence and Cellular Ageing in Immune Cells. Aging Cell, 20, e13316. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, Y., Deng, W., Wu, J., et al. (2023) TXNIP Exacerbates the Senescence and Aging-Related Dysfunction of β Cells by Inducing Cell Cycle Arrest through p38-p16/p21-CDK-Rb Pathway. Anti-oxidants & Redox Signaling, 38, 480-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Al-Azab, M., Safi, M., Idiiatullina, E., Al-Shaebi, F. and Zaky, M.Y. (2022) Aging of Mesenchymal Stem Cell: Machinery, Markers, and Strategies of Fighting. Cellular & Molecular Biology Letters, 27, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shi, D., Tan, Q., Ruan, J., Tian, Z., Wang, X., Liu, J., Liu, X., Liu, Z., Zhang, Y., Sun, C. and Niu, Y. (2021) Aging-Related Markers in Rat Urine Revealed by Dynamic Metabolic Profiling Using Machine Learning. Aging, 13, 14322-14341. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sikora, E., Bielak-Zmijewska, A. and Mosieniak, G. (2021) A Com-mon Signature of Cellular Senescence; Does It Exist? Ageing Research Reviews, 71, Article ID: 101458. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Khosla, S., Farr, J.N., Tchkonia, T. and Kirkland, J.L. (2020) The Role of Cellular Senescence in Ageing and Endocrine Disease. Nature Reviews Endocrinology, 16, 263-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yang, J.H., Hayano, M., Griffin, P.T., et al. (2023) Loss of Epi-genetic Information as a Cause of Mammalian Aging. Cell, 186, 305-326.E27.
|
|
[18]
|
Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alz-heimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., Cao, Y. and Li, H. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Muralidar, S., Ambi, S.V., Sekaran, S., Thirumalai, D. and Palaniappan, B. (2020) Role of Tau Protein in Alzheimer’s Disease: The Prime Pathological Player. International Journal of Biological Macromolecules, 163, 1599-1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sun, Y.Y., Wang, Z. and Huang, H.C. (2023) Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cellular and Molecular Neurobi-ology. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Björkegren, J.L.M. and Lusis, A.J. (2022) Atherosclero-sis: Recent Developments. Cell, 185, 1630-1645. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Grootaert, M.O.J., Moulis, M., Roth, L., Martinet, W., Vindis, C., Bennett, M.R. and De Meyer, G.R.Y. (2018) Vascular Smooth Muscle Cell Death, Autophagy and Senescence in Ath-erosclerosis. Cardiovascular Research, 114, 622-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Y., Weng, J., Huan, L., Sheng, S. and Xu, F. (2023) Mitophagy in Atherosclerosis: From Mechanism to Therapy. Frontiers in Immunology, 14, Article 1165507. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017) Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 120, 1812-1824. [Google Scholar] [CrossRef]
|
|
[26]
|
Guo, Y., Jia, X., Cui, Y., Song, Y., Wang, S., Geng, Y., Li, R., Gao, W. and Fu, D. (2021) Sirt3-Mediated Mitophagy Regulates AGEs-Induced BMSCs Senescence and Senile Osteoporosis. Redox Biology, 41, Article ID: 101915. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, F., Yuan, L., Li, L., Yang, J., Liu, J., Chen, Y., Zhang, J., Lu, Y., Yuan, Y. and Cheng, J. (2023) S-Sulfhydration of SIRT3 Combats BMSC Senescence and Ameliorates Osteo-porosis via Stabilizing Heterochromatic and Mitochondrial Homeostasis. Pharmacological Research, 192, Article ID: 106788. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hu, S. and Wang, S. (2022) The Role of SIRT3 in the Osteoporosis. Frontiers in Endocrinology, 13, Article 893678. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Föger-Samwald, U., Kerschan-Schindl, K., Butylina, M. and Pi-etschmann, P. (2022) Age Related Osteoporosis: Targeting Cellular Senescence. International Journal of Molecular Sci-ences, 23, Article 2701. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Iwasaki, K., Abarca, C. and Aguayo-Mazzucato, C. (2023) Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes & Metabolism Journal, 47, 441-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Murakami, T., Inagaki, N. and Kondoh, H. (2022) Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Frontiers in Endo-crinology, 13, Article 869414. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Narasimhan, A., Flores, R.R., Robbins, P.D. and Niedernhofer, L.J. (2021) Role of Cellular Senescence in Type II Diabetes. Endocrinology, 162, bqab136. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dludla, P.V., Mabhida, S.E., Ziqubu, K., Nkambule, B.B., Mazibu-ko-Mbeje, S.E., Hanser, S., Basson, A.K., Pheiffer, C. and Kengne, A.P. (2023) Pancreatic β-Cell Dysfunction in Type 2 Diabetes: Implications of Inflammation and Oxidative Stress. World Journal of Diabetes, 14, 130-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cheng, F., Luk, A.O., Shi, M., Huang, C., et al. (2022) Shortened Leukocyte Telomere Length Is Associated with Glycemic Progression in Type 2 Diabetes: A Prospective and Mendelian Randomization Analysis. Diabetes Care, 45, 701-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shmulevich, R. and Krizhanovsky, V. (2021) Cell Senescence, DNA Damage, and Metabolism. Antioxidants & Redox Signaling, 34, 324-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Peng, L., Baradar, A.A., Aguado, J. and Wolvetang, E. (2023) Cellular Senescence and Premature Aging in Down Syndrome. Mechanisms of Ageing and Development, 212, Article ID: 111824. [Google Scholar] [CrossRef] [PubMed]
|