|
[1]
|
Van de Wiele, T., Van Praet, J.T., Marzorati, M., Drennan, M.B. and Elewaut, D. (2016) How the Microbiota Shapes Rheumatic Diseases. Nature Reviews Rheumatology, 12, 398-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Micro-biome in Health and Disease. The New England Journal of Medicine, 375, 2369-2379. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhuang, H., Cheng, L., Wang, Y., et al. (2019) Dysbiosis of the Gut Microbiome in Lung Cancer. Frontiers in Cellular and Infection Microbiology, 9, Article 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zheng, Y., Fang, Z., Xue, Y., et al. (2020) Specific Gut Microbi-ome Signature Predicts the Early-Stage Lung Cancer. Gut Microbes, 11, 1030-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vernocchi, P., Gili, T., Conte, F., et al. (2020) Network Analysis of Gut Microbiome and Metabolome to Discover Microbiota-Linked Biomarkers in Patients Affected by Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 21, Article 8730. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
袁文杰, 郭亚琼, 韩毅, 等. 非小细胞肺癌患者肠道微生物特征分析[J]. 微生物学报, 2021, 61(9): 2776-2790.
|
|
[7]
|
安瑞. 肺癌患者肠道微生物群落结构特征的初步研究[D]: [硕士或博士学位论文]. 杭州: 南京医科大学, 2021.
|
|
[8]
|
Liu, F., Li, J., Guan, Y., et al. (2019) Dysbiosis of the Gut Mi-crobiome Is Associated with Tumor Biomarkers in Lung Cancer. International Journal of Biological Sciences, 15, 2381-2392. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Weinberg, F., Dickson, R.P., Nagrath, D. and Ramnath, N. (2020) The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients? Cancers, 13, Article 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lu, H., Gao, N.L., Tong, F., et al. (2021) Alterations of the Human Lung and Gut Microbiomes in Non-Small Cell Lung Carcinomas and Distant Metastasis. Microbiology Spectrum, 9, e00802-21. [Google Scholar] [CrossRef]
|
|
[11]
|
Ma, Y., Qiu, M.T., Wang, S.S., et al. (2021) Distinct Tumor Bac-terial Microbiome in Lung Adenocarcinomas Manifested as Radiological Subsolid Nodules. Translational Oncology, 14, Article ID: 101050. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lim, M.Y., Hong, S., Hwang, K.H., et al. (2021) Diagnostic and Prognostic Potential of the Oral and Gut Microbiome for Lung Adenocarcinoma. Clinical and Translational Medicine, 11, e508. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
He, Y., Wen, Q., Yao, F., et al. (2017) Gut-Lung Axis: The Microbial Contributions and Clinical Implications. Critical Reviews in Microbiology, 43, 81-95. [Google Scholar] [CrossRef]
|
|
[14]
|
Schuijt, T.J., Lankelma, J.M., Scicluna, B.P., et al. (2016) The Gut Microbiota Plays a Protective Role in the Host Defence against Pneumococcal Pneumonia. Gut, 65, 575-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Atarashi, K., Tanoue, T., Ando, M., et al. (2015) Th17 Cell In-duction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 163, 367-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bradley, C.P., Teng, F., Felix, K.M., et al. (2017) Segmented Fila-mentous Bacteria Provoke Lung Autoimmunity by Inducing Gut-Lung Axis Th17 Cells Expressing Dual TCRs. Cell Host Microbe, 2, 697-704.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Birchenough, G.M., Nystrom, E.E., Johansson, M.E., et al. (2016) A Sentinel Goblet Cell Guards the Colonic Crypt by Triggering Nlrp6-Dependent Muc2 Secretion. Science, 352, 1535-1542. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gui, Q., Li, H., Wang, A., et al. (2020) The Association between Gut Butyrate-Producing Bacteria and Non-Small-Cell Lung Cancer. Journal of Clinical Laboratory Analysis, 34, e23318. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tan, J., McKenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Im-munology, 121, 91-119. [Google Scholar] [CrossRef]
|
|
[21]
|
Chang, P.V., Hao, L., Offer-manns, S. and Medzhitov, R. (2014) The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, 2247-2252. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vieira, R.S., Castoldi, A., Basso, P.J., et al. (2019) Bu-tyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Frontiers in Immunology, 10, Article 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bachem, A., Makhlouf, C., Binger, K.J., et al. (2019) Microbio-ta-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 51, 285-297.E5. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kim, K., Kwon, O., Ryu, T.Y., et al. (2019) Propionate of a Microbiota Metabolite Induces Cell Apoptosis and Cell Cycle Arrest in Lung Cancer. Molecular Medicine Reports, 20, 1569-1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gaucher, L., Adda, L., Séjourné, A., et al. (2021) Asso-ciations between Dysbiosis-Inducing Drugs, Overall Survival and Tumor Response in Patients Treated with Immune Checkpoint Inhibitors. Therapeutic Advances in Medical Oncology, 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tinsley, N., Zhou, C., Tan, G., et al. (2020) Cumulative Antibi-otic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist, 25, 55-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Derosa, L., Hellmann, M.D., Spaziano, M., et al. (2018) Negative Association of Antibiotics on Clinical Activity of Immune Checkpoint Inhibitors in Patients with Ad-vanced Renal Cell and Non-Small-Cell Lung Cancer. Annals of Oncology, 29, 1437-1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ochi, N., Ichihara, E., Takigawa, N., et al. (2021) The Effects of An-tibiotics on the Efficacy of Immune Checkpoint Inhibitors in Patients with Non-Small-Cell Lung Cancer Differ Based on PD-L1 Expression. European Journal of Cancer, 149, 73-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hakozaki, T., Richard, C., Elkrief, A., et al. (2020) The Gut Micro-biome Associates with Immune Checkpoint Inhibition Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Immunology Research, 8, 1243-1250. [Google Scholar] [CrossRef]
|
|
[30]
|
Ouaknine Krief, J., de Tauriers P.H., Dumenil, C., et al. (2019) Role of Antibiotic Use, Plasma Citrulline and Blood Microbiome in Advanced Non-Small Cell Lung Cancer Pa-tients Treated with Nivolumab. Journal for ImmunoTherapy of Cancer, 7, Article 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nyein, A.F., Bari, S., Hogue, S., et al. (2022) Effect of Prior An-tibiotic or Chemotherapy Treatment on Immunotherapy Response in Non-Small Cell Lung Cancer. BMC Cancer, 22, Ar-ticle No. 101. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Itzstein, M.S.V., Gonugunta, A.S., Sheffield, T., et al. (2022) Association between Antibiotic Exposure and Systemic Immune Parameters in Cancer Patients Receiving Checkpoint In-hibitor Therapy. Cancers, 14, Article 1327. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, F., Ferrero, M., Dong, N., et al. (2021) Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Cancers, 13, Article 2514. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Verschueren, M.V., van der Welle, C.M.C., Tonn, M., et al. (2021) The Association between Gut Microbiome Affecting Concomitant Medication and the Effectiveness of Immunotherapy in Patients with Stage IV NSCLC. Scientific Reports, 11, Article No. 23331. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, C., Wang, J., Sun, Z., et al. (2021) Commensal Microbi-ota Contributes to Predicting the Response to Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer Patients. Cancer Science, 112, 3005-3017. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Song, P., Yang, D., Wang, H., et al. (2020) Relationship between Intestinal Flora Structure and Metabolite Analysis and Immunotherapy Efficacy in Chinese NSCLC Patients. Thoracic Cancer, 11, 1621-1632. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Boesch, M., Baty, F., Albrich, W.C., et al. (2021) Local Tumor Mi-crobial Signatures and Response to Checkpoint Blockade in Non-Small Cell Lung Cancer. Oncoimmunology, 10, Article 1988403. [Google Scholar] [CrossRef]
|
|
[38]
|
Heshiki, Y., Vazquez-Uribe, R., Li, J., et al. (2020) Pre-dictable Modulation of Cancer Treatment Outcomes by the Gut Microbiota. Microbiome, 8, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Botticelli, A., Vernocchi, P., Marini, F., et al. (2020) Gut Metab-olomics Profiling of Non-Small Cell Lung Cancer (NSCLC) Patients under Immunotherapy Treatment. Journal of Translational Medicine, 18, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, T., Xiong, Q., Li, L.L. And Hu, Y. (2019) Intestinal Micro-biota Predicts Lung Cancer Patients at Risk of Immune-Related Diarrhea. Immunotherapy, 11, 385-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chau, J., Yadav, M., Liu, B., et al. (2021) Prospective Correlation be-tween the Patient Microbiome with Response to and Development of Immune-Mediated Adverse Effects to Immuno-therapy in Lung Cancer. BMC Cancer, 21, Article No. 808. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yang, J.J., Yu, D.X. and Shu, X.O. (2020) Association of Dietary Fiber and Yogurt Consumption with Lung Cancer Risk: A Pooled Analysis. JAMA Oncology, 6, 788-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tomita, Y., Ikeda, T., Sakata, S., et al. (2020) Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research, 8, 1236-1242. [Google Scholar] [CrossRef]
|
|
[44]
|
Messaoudene, M., Pidgeon, R., Richard, C., et al. (2022) A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti-PD-1 Resistance through Effects on the Gut Micro-biota. Cancer Discovery, 12, 1070-1087. [Google Scholar] [CrossRef]
|
|
[45]
|
Lee, S.H., Cho, S.Y., Yoon, Y., et al. (2021) Bifidobacterium bifidum Strains Synergize with Immune Checkpoint Inhibitors to Reduce Tumour Burden in Mice. Nature Microbiology, 6, 277-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Huang, J.M., Liu, D., Wang, Y.W., et al. (2022) Ginseng Poly-saccharides Alter the Gut Microbiota and Kynurenine/Tryptophan Ratio, Potentiating the Antitumour Effect of Antipro-grammed Cell Death 1/Programmed Cell Death Ligand 1 (Anti-PD-1/PD-L1) Immunotherapy. Gut, 71, 734-745. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Routy, B., Le Chatelier, E., Derosa, L., et al. (2018) Gut Micro-biome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97.
|
|
[48]
|
Tanoue, T., Morita, S., Plichta, D.R., et al. (2019) A Defined Commensal Consortium Elicits CD8 T Cells and Anti-Cancer Im-munity. Nature, 565, 600-605. [Google Scholar] [CrossRef] [PubMed]
|