|
[1]
|
Bergman, P. and Brighenti, S. (2020) Targeted Nutrition in Chronic Disease. Nutrients, 12, Article No. 1682. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
CDC, Center for Disease Control and Prevention: National Center for Chronic Disease Prevention and Health Promotion. https://www.cdc.gov/chronicdisease/about/index.htm
|
|
[3]
|
Xi, L., Zhai, G., Liu, Y., Gong, Y., Lu, Q., Zhang, Z., Liu, H., Jin, J., Zhu, X., Yin, Z., Xie, S. and Han, D. (2023) Attenu-ated Glucose Uptake Promotes Catabolic Metabolism through Activated AMPK Signaling and Impaired Insulin Signaling in Zebrafish. Frontiers in Nutrition, 10, Article ID: 1187283. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cao, Y., Chen, Q., Liu, Y., Jin, L. and Peng, R. (2023) Research Progress on the Construction and Application of a Diabetic Zebrafish Model. International Journal of Molecular Sciences, 24, Article No. 5195. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Middel, C.S., Hammes, H.P. and Kroll, J. (2021) Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells, 10, Article No. 1313. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Alvarez, Y., Chen, K., Reynolds, A.L., Waghorne, N., O’Connor, J.J. and Kennedy, B.N. (2010) Predominant Cone Photoreceptor Dysfunction in a Hyperglycaemic Model of Non-Proliferative Diabetic Retinopathy. Disease Models & Mechanisms, 3, 236-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Olsen, A.S., Sarras, M.P. and Intine, R.V. (2010) Limb Regeneration Is Impaired in an Adult Zebrafish Model of Diabetes Mellitus. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 18, 532-542. [Google Scholar] [CrossRef]
|
|
[8]
|
Lister, R., Chamberlain, A., Einstein, F., Wu, B., Zheng, D. and Zhou, B. (2019) Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. Diabetes and Obesity Inter-national Journal, 4, Article ID: 000202. [Google Scholar] [CrossRef]
|
|
[9]
|
Muñiz-Ramirez, A., Garcia-Campoy, A.H., Pérez Gutiérrez, R.M., Garcia Báez, E.V. and Mota Flores, J.M. (2021) Evaluation of the Antidiabetic and Antihyperlipidemic Activity of Spondias purpurea Seeds in a Diabetic Zebrafish Model. Plants (Basel, Switzerland), 10, Article No. 1417. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Larrayoz, M., Garcia-Barchino, M.J., Celay, J., Etxebeste, A. and Martinez-Climent, J.A. (2023) Preclinical Models for Prediction of Immunotherapy Outcomes and Immune Evasion Mechanisms in Genetically Heterogeneous Multiple Myeloma. Nature Medicine, 29, 632-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, L., Deng, Q., Hu, H. and Li, Y. (2019) Glyphosate In-duces Benign Monoclonal Gammopathy and Promotes Multiple Myeloma Progression in Mice. Journal of Hematology & Oncology, 12, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Varela-Moreira, A., van Straten, D., van Leur, H.F., Ruiter, R.W.J., Deshantri, A.K., Hennink, W.E., Fens, M.H.A.M., Groen, R.W.J. and Schiffelers, R.M. (2020) Polymeric Mi-celles Loaded with Carfilzomib Increase Tolerability in a Humanized Bone Marrow-Like Scaffold Mouse Model. Inter-national Journal of Pharmaceutics: X, 2, Article ID: 100049. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, L.L., Saito, Y., Marches, F., Halene, S., Palucka, A.K., Manz, M.G. and Flavell, R.A. (2014) Devel-opment and Function of Human Innate Immune Cells in a Humanized Mouse Model. Nature Biotechnology, 32, 364-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lin, J., Zhang, W., Zhao, J.J., Kwart, A.H., Yang, C., Ma, D., Ren, X., Tai, Y.T. anderson, K.C., Handin, R.I. and Munshi, N.C. (2016) A Clinically Relevant in Vivo Zebrafish Model of Human Multiple Myeloma to Study Preclinical Therapeutic Efficacy. Blood, 128, 249-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., et al. (2013) The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature, 496, 498-503.
|
|
[16]
|
Heins-Marroquin, U., Jung, P.P., Cordero-Maldonado, M.L., Crawford, A.D. and Linster, C.L. (2019) Phenotypic Assays in Yeast and Zebrafish Reveal Drugs That Rescue ATP13A2 Deficiency. Brain Communications, 1, fcz019. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Robinson, B., Dumas, M., Gu, Q. and Kanungo, J. (2018) N-acetylcysteine Prevents Ketamine-Induced Adverse Effects on Development, Heart Rate and Monoaminergic Neurons in Zebrafish. Neuroscience Letters, 682, 56-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Facciol, A. and Gerlai, R. (2020) Zebrafish Shoaling, Its Behav-ioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Frontiers in Be-havioral Neuroscience, 14, Article ID: 572175. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Baker, M.R. and Wong, R.Y. (2019) Contextual Fear Learning and Memory Differ between Stress Coping Styles in Zebrafish. Scientific Reports, 9, Article No. 9935. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Doyle, J.M. and Croll, R.P. (2022) A Critical Review of Zebrafish Models of Parkinson’s Disease. Frontiers in Pharmacology, 13, Article ID: 835827. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rogalewicz, B., Szczesio, M. and Czylkowska, A. (2021) Influ-ence of Incorporation of Different dn-Electron Metal Cations into Biologically Active System on Its Biological and Phys-icochemical Properties. International Journal of Molecular Sciences, 22, Article No. 12909. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, J., Wang, Y. and Liu, J. (2019) Blockade of Calci-um-Permeable AMPA Receptors in the Lateral Habenula Produces Increased Antidepressant-Like Effects in Unilateral 6-Hydroxydopamine-Lesioned Rats Compared to Sham-Lesioned Rats. Neuropharmacology, 157, Article ID: 107687. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Suzzi, S., Ahrendt, R., Hans, S., et al. (2021) Deletion of lrrk2 Causes Early Developmental Abnormalities and Age-Dependent Increase of Monoamine Catabolism in the Zebrafish Brain. PLoS Genetics, 17, e1009794. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Faria, M., Prats, E., Bellot, M., Gomez-Canela, C. and Raldúa, D. (2021) Pharmacological Modulation of Serotonin Levels in Zebrafish Larvae: Lessons for Identifying Environmental Neurotoxicants Targeting the Serotonergic System. Toxics, 9, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bühler, A. and Carl, M. (2021) Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules, 11, Article No. 324. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Whiteside S.P.H. (2023) Examining Community Clinicians Use of Imaginal Exposure with Childhood Anxiety Disorders. Child Psychiatry and Human Development. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hung, J.C., Wu, J.L., Li, H.C., Chiu, H.W. and Hong, J.R. (2021) The Proapoptotic Gene Bad Regulates Brain Development via p53-Mediated Stress Signals in Zebrafish. Cells, 10, Article No. 2820. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Marchi, D. and van Eeden, F.J.M. (2021) Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells, 10, Article No. 3441. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pizzagalli, D.A. and Roberts, A.C. (2022) Prefrontal Cortex and De-pression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 47, 225-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Demin, K.A., Krotova, N.A., Ilyin, N.P., Galstyan, D.S., Kole-snikova, T.O., Strekalova, T., de Abreu, M.S., Petersen, E.V., Zabegalov, K.N. and Kalueff, A.V. (2022) Evolutionarily Conserved Gene Expression Patterns for Affective Disorders Revealed Using Cross-Species Brain Transcriptomic Analyses in Humans, Rats and Zebrafish. Scientific Reports, 12, Article No. 20836. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rai, A.R., Joy, T., Rashmi, K.S., Rai, R., Vinodini, N.A. and Jiji, P. (2022) Zebrafish as an Experimental Model for the Simulation of Neurological and Craniofacial Disorders. Veterinary World, 15, 22-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Curpăn, A.S., Balmus, I.M., Dobrin, R.P., Ciobica, A., Chele, G.E., Gorgan, D.L. and Boloș, A. (2022) A Mini-Review Regarding the Modalities to Study Neurodevelopmental Dis-orders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sciences, 12, Article No. 1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Vetri, L., Maniscalco, L., Diana, P., Guidotti, M., Matranga, D., Bonnet-Brilhault, F. and Tripi, G. (2022) A Preliminary Study on Photic Driving in the Electroencephalogram of Chil-dren with Autism across a Wide Cognitive and Behavioral Range. Journal of Clinical Medicine, 11, Article No. 3568. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R. and Kalueff, A.V. (2014) Zebrafish Models for Translational Neuroscience Research: From Tank to Bedside. Trends in Neuroscienc-es, 37, 264-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tayanloo-Beik, A., Hamidpour, S.K., Abedi, M., Shojaei, H., Ta-virani, M.R., Namazi, N., Larijani, B. and Arjmand, B. (2022) Zebrafish Modeling of Autism Spectrum Disorders, Cur-rent Status and Future Prospective. Frontiers in Psychiatry, 13, Article ID: 911770. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Morson, S., Yang, Y., Price, D.J. and Pratt, T. (2021) Expression of Genes in the 16p11.2 Locus during Development of the Human Fetal Cerebral Cortex. Cerebral Cortex (New York, N.Y.: 1991), 31, 4038-4052. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ma, X., Wei, J., Cui, Y., Xia, B., Zhang, L., Nehme, A., Zuo, Y., Ferguson, D., Levitt, P. and Qiu, S. (2022) Disrupted Timing of MET Signaling Derails the Developmental Maturation of Cortical Circuits and Leads to Altered Behavior in Mice. Cerebral Cortex (New York, N.Y.: 1991), 32, 1769-1786. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xie, Y.J., et al. (2017) Copy Number Variations Independently Induce Autism Spectrum Disorder. Bioscience Reports, 37, BSR20160570. [Google Scholar] [CrossRef]
|
|
[39]
|
Pensado-López, A., Veiga-Rúa, S., Carracedo, Á., Allegue, C. and Sánchez, L. (2020) Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes, 11, Article No. 1376. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Antón-Galindo, E., Dalla Vecchia, E., Orlandi, J.G., Castro, G., Gualda, E.J., Young, A.M.J., Guasch-Piqueras, M., Arenas, C., Herrera-Úbeda, C., Garcia-Fernàndez, J., Aguado, F., Loza-Alvarez, P., Cormand, B., Norton, W.H.J. and Fernàndez-Castillo, N. (2022) Deficiency of the ywhaz Gene, In-volved in Neurodevelopmental Disorders, Alters Brain Activity and Behaviour in Zebrafish. Molecular Psychiatry, 27, 3739-3748. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Singh, B.J., Zu, L., Summers, J., Asdjodi, S., Glasgow, E. and Kanwal, J.S. (2022) NemoTrainer: Automated Conditioning for Stimulus-Directed Navigation and Decision Making in Free-Swimming Zebrafish. Animals: An Open Access Journal from MDPI, 13, Article No. 116. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bauer, B., Mally, A. and Liedtke, D. (2021) Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. International Journal of Molecular Sciences, 22, Article No. 13417. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Abozaid, A. and Gerlai, R. (2022) Behavioral Effects of Buspirone in Juvenile Zebrafish of Two Different Genetic Backgrounds. Toxics, 10, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, F., Lin, J., Li, T., Jian, J., Zhang, Q., Zhang, Y., Liu, X. and Li, Q. (2022) Rrn3 Gene Knockout Affects Ethanol-Induced Locomotion in Adult Heterozygous Zebrafish. Psychopharmacol-ogy, 239, 621-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Vossen, L.E., Brunberg, R., Rådén, P., Winberg, S. and Roman, E. (2022) Sex-Specific Effects of Acute Ethanol Exposure on Locomotory Activity and Exploratory Behavior in Adult Zebrafish (Danio rerio). Frontiers in Pharmacology, 13, Article ID: 853936. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Baldin, S.L., de Pieri Pickler, K., de Farias, A.C.S., Bernardo, H.T., Scussel, R., da Costa Pereira, B., Pacheco, S.D., Dondossola, E.R., Machado-de-Ávila, R.A., Wanderley, A.G. and Rico, E.P. (2022) Gallic Acid Modulates Purine Metabolism and Oxidative Stress Induced by Ethanol Exposure in Zebrafish Brain. Purinergic Signalling, 18, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Prikhodko, V.A., Sysoev, Y.I., Gerasimova, E.V. and Okovityi, S.V. (2022) Novel Chromone-Containing Allylmorpholines Induce Anxiolytic-Like and Sedative Effects in Adult Zebrafish. Biomedicines, 10, Article No. 2783. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Buckley, D.M., Sidik, A., Kar, R.D. and Eberhart, J.K. (2019) Differentially Sensitive Neuronal Subpopulations in the Central Nervous System and the Formation of Hindbrain Heter-otopias in Ethanol-Exposed Zebrafish. Birth Defects Research, 111, 700-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bonfiglio, N.S., Renati, R. and Bottini, G. (2022) Decoding Emotion in Drug Abusers: Evidence for Face and Body Emotion Recognition and for Disgust Emotion. European Journal of Inves-tigation in Health, Psychology and Education, 12, 1427-1440. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
武琳, 杨明, 陈忠. 斑马鱼模型在心血管疾病研究领域的应用及进展[J]. 现代医学, 2018, 46(3): 354-357.
|
|
[51]
|
Lieschke, G.J. and Currie, P.D. (2007) Animal Models of Human Disease: Zebrafish Swim into View. Nature Reviews. Genetics, 8, 353-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Fakhlaei, R., Selamat, J., Razis, A.F.A., Sukor, R., Ahmad, S., Amani Babadi, A. and Khatib, A. (2021) In Vivo Toxicity Evaluation of Sugar Adulterated Heterotrigona itama Honey Using Zebrafish Model. Molecules (Basel, Switzerland), 26, Article No. 6222. [Google Scholar] [CrossRef] [PubMed]
|