催化燃烧Cl-VOCs催化材料的研究进展
Recent Progress in Catalytic Materials for Catalytic Combustion of Chlorinated Volatile Organic Compounds
摘要: 从催化剂活性组分、催化剂载体、催化剂失活三个方面,对近年来催化燃烧含氯挥发性有机物(Cl-VOCs)催化剂的研究进行了总结。贵金属催化剂用于降解Cl-VOCs的研究主要集中在选择有效载体和合成双组份贵金属催化剂,非贵金属催化剂的研究则主要着重于合成高活性过渡金属复合氧化物、钙钛矿和尖晶石等催化剂;催化燃烧Cl-VOCs时氯与活性物质生成的氯化物被认为是导致催化剂失活的重要原因,实际应用中水蒸气、积碳等对催化降解Cl-VOCs的反应活性也有很大影响。本文将为Cl-VOCs污染物催化燃烧时催化剂的合理选择及催化反应条件的优化控制提供一定参考。
Abstract: he research progress in the catalytic combustion of Cl-VOCs(Chlorinated Volatile Organic Compounds) is reviewed. In this review, the effects of the active species, catalyst support, water vapor and coking on the catalytic combustion reaction were summarized. The research related to noble metal catalysts mainly focuses on developing new supports and dual noble catalysts. The research on non-noble metal catalysts concentrate on the development of transition metal mixed oxide,perovshites and spinel catalysts; The chlorination of active species is regarded as an important reason for catalyst deactivation. Besides, the effects of water vapor and coking deactivation on the catalytic combustion process are discussed with considering the practical application. This review will be helpful in choosing an appropriate catalyst and the optimal reaction conditions for the removal of Cl-VOCs by catalytic combustion with high activity and high stability.
文章引用:杨学华, 唐爱东, 李咸伟. 催化燃烧Cl-VOCs催化材料的研究进展[J]. 材料科学, 2011, 1(1): 10-16. http://dx.doi.org/10.12677/ms.2011.11003

参考文献

[1] W. B. Li, J. X. Wang, and H. Gong. Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 2009, 148(1-2): 81-87.
[2] D. Yu, X. Wang, and D. Li, et al. Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts. Journal of Hazardous Materials, 2011, 188(1-3): 132-139.
[3] J. Pires, A. Carvalho, M. B. de Carvalho. Adsorption of volatile organic compounds in Y zeolites and pillared clays. Microporous and Mesoporous Materials, 2001, 43(3): 277-287.
[4] S. H. Streger, C. W. Condee, and A. P. Togna, et al. Degradation of hydrohalocarbons and brominated compounds by methane and propane-oxidizing bacteria. Environmental Science & Technology, 1999, 33(24): 4477-4482.
[5] S. Pitkäaho, S. Ojala, and T. Maunula, et al. Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures. Applied Catalysis B: Environmental, 2011, 102(3-4): 395-403.
[6] H. Li, G. Lu, and Q. Dai, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Applied Catalysis B: Environmental, 2011, 102(3-4): 475-483.
[7] 黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展[J]. 物理化学学报, 2010, 26(04): 885-894.
[8] M. Taralunga, J. Mijoin, and P. Magnoux. Catalytic destruction of chlorinated POPs-Catalytic oxidation of chlorobenzene over PtHFAU catalysts. Applied Catalysis B: Environmental, 2005, 60(3-4): 163-171.
[9] J. M. Giraudon, A. Elhachimi, and G. Leclercq. Catalytic oxidation of chlorobenzene over Pd/perovskites. Applied Catalysis B: Environmental, 2008, 84(1-2): 251-261.
[10] S. Scirè, MinicòS, C. Crisafulli. Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 2003, 45(2): 117-125.
[11] 李鹏, 何炽, 程杰等. 含钯类水滑石衍生复合氧化物Pd/M_3AlO(M = Mg, Co, Ni, Cu, Zn)催化剂上氯苯的催化氧化[J]. 物理化学学报, 2009, 25(11): 2279-2284.
[12] D. Li, Y. Zheng, and X. Y. Wang. Effect of phosphoric acid on catalytic combustion of trichloroethylene over Pt/P-MCM-41. Applied Catalysis A: General, 2008, 340(1): 33-41.
[13] R. W. van den Brink, R. Louw, and P. Mulder. Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide. Applied Catalysis B: Environmental, 2000, 25(4): 229-237.
[14] Q. G. Dai, X. Y. Wang, and G. Z. Lu. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B-Environmental, 2008, 81(3-4): 192-202.
[15] X. Y. Wang, Q. Kang, D. Li. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 2009, 86(3-4): 166-175.
[16] B. de Rivas, R. López-Fonseca, et al. Impact of induced chlorine-poisoning on the catalytic behaviour of Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2 in the gas-phase oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 2011, 104(3-4): 373-381.
[17] 黄琴琴, 周仁贤. 负载型CeO2催化剂催化降解Cl-VOCs性能的研究[A]. 第六届全国环境催化与环境材料学术会议论文集[C], 中国四川成都, 2009.
[18] J. I. Gutierrez-Ortiz, B. de Rivas, and R. Lo´pez-Fonseca, et al. Structure of Mn-Zr mixed oxides catalysts and their catalyticperformance in the gas-phase oxidation of chlorocarbons. Chemosphere, 2007, 68(6): 1004-1012.
[19] A. Z. Abdullah, M. Z. Abu Bakar, and S. Bhatia. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials, 2006, 129(1-3): 39-49.
[20] 吴西宁, 庞菊玲, 曹武轩等. 催化氧化法分解邻二氯苯[J]. 工业催化, 2003(11): 45-48.
[21] S. Kawi, M. Te. MCM-48 supported chromium catalyst for trichloroethylene oxidation. Catalysis Today, 1998, 44(1-4): 101-109.
[22] A. Aranzabal, J. A. Gonzalez-Marcos, and M. Romero-Sa´ez, et al. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1, 2-dichloroethane). Applied Catalysis B-Environmental, 2009, 88(3-4): 533-541.
[23] F. Bertinchamps, C. Groire, and E. M. Gaigneaux. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part I: Identification of the optimal main active phases and supports. Applied Catalysis B: Environmental, 2006, 66(1-2): 1-9.
[24] B. De Rivas, R. Lopez-Fonseca, and C. Sampedro, et al. Cata lytic behaviour of thermally aged Ce/Zr mixed oxides for the purification of chlorinated VOC-containing gas streams. Applied Catalysis B-Environmental, 2009, 90(3-4): 545-555.
[25] 龚浩, 黎维彬. 1, 2——二氯乙烷在担载铈钛复合氧化物的蜂窝陶瓷催化剂上的催化燃烧:催化活性组分颗粒大小对转化率的影响[A]. 颗粒学前沿问题研讨会——暨第九届全国颗粒制备与处理研讨会论文集[C], 中国山东威海, 2009.
[26] F. S. Saleh, M. M. Rahman. Oxidative destruction of o-DCB on supported manganese oxide catalyst. Journal of Hazardous Materials, 2009, 162(2-3): 1574-1577.
[27] V. H. Vu, J. Belkouch, and A. Ould-Dris, et al. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst. Journal of Hazardous Materials, 2009, 169(1-3): 758-765.
[28] S. D. Yim, D. J. Koh, and In-Sik Nam. A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts. Catalysis Today, 2002, 75(1-4): 269-276.
[29] R. Rachapudi, P. S. Chintawar, and H. L. Greene. Aging and structure activity characteristics ofCR-ZSM-5 catalysts during exposure to chlorinated VOCs. Journal of Catalysis, 1999, 185(1): 58-72.
[30] J. Jones, J. R. H. Ross. The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today, 1997, 35(1-2): 97-105.
[31] 沈柳倩, 翁芳蕾, 袁鹏军等. 钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究[J]. 分子催化, 2008, 22(04): 320-324.
[32] M. Guillemot, J. Mijoin, and S. Mignard, et al. Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system. Applied Catalysis B: Environmental, 2007, 75(3-4): 249-255.
[33] R. López-Fonseca, et al. Performance of zeolites and product selectivity in the gas-phase oxidation of 1, 2-dichloroethane. Catalysis Today, 2000, 62(4): 367-377.
[34] Q. Huang, X. Xue, R. Zhou. Decomposition of 1, 2-dichloroethane over CeO2 modified USY zeolite catalysts: Effect of acidity and redox property on the catalytic behavior. Journal of Hazardous Materials, 2010, 183(1-3): 694-700.
[35] S. Krishnamoorthy, J. A. Rivas, and M. D. Amiridis. Catalytic Oxidation of 1, 2-Dichlorobenzene over Supported Transition Metal Oxides. Journal of Catalysis, 2000, 193(2): 264-272.
[36] A. Khaleel, A. Al-Nayli. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene. Applied Catalysis B: Environmental, 2008, 80(1-2): 176-184.
[37] R. Weber, T. Sakurai, and Hagenmaier. Low temperature decomposition of PCDD/PCDF, Chlorobenzens and PAHs by TiO2-based V2O5-WO3 catalysts. Applied Catalysis B: Environmental, 1999, 20(4): 249-256.