|
[1]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clini-cians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chahat, Bhatia, R. and Kumar, B. (2023) p53 as a Poten-tial Target for Treatment of Cancer: A Perspective on Recent Advancements in Small Molecules with Structural Insights and SAR Studies. European Journal of Medicinal Chemistry, 247, Article ID: 115020. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wu, Q., Qian, W., Sun, X. and Jiang, S. (2022) Small-Molecule Inhibitors, Immune Checkpoint Inhibitors, and More: FDA-Approved Novel Therapeutic Drugs for Solid Tumors from 1991 to 2021. Journal of Hematology & Oncology, 15, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bedard, P.L., Hyman, D.M., Davids, M.S. and Siu, L.L. (2020) Small Molecules, Big Impact: 20 Years of Targeted Therapy in Oncology. The Lancet. 395, 1078-1088. [Google Scholar] [CrossRef]
|
|
[5]
|
Hochhaus, A., Larson, R.A., Guilhot, F., Radich, J.P., Branford, S., Hughes, T.P., Baccarani, M., Deininger, M.W., Cervantes, F., Fujihara, S., et al. (2017) Long-Term Out-comes of Imatinib Treatment for Chronic Myeloid Leukemia. The New England Journal of Medicine, 376, 917-927. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., et al. (2021) Small Molecules in Targeted Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal Transduction and Targeted Therapy, 6, Article No. 201. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bhatia, N., Khator, R., Kulkarni, S., Singh, Y., Kumar, P. and Thareja, S. (2023) Recent Advancements in the Discovery of MDM2/MDM2-p53 Interaction Inhibitors for the Treat-ment of Cancer. Current Medicinal Chemistry, 30, 3668-3701. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Finlay, C.A., Hinds, P.W. and Levine, A.J. (1989) The p53 Proto-Oncogene Can Act as a Suppressor of Transformation. Cell, 57, 1083-1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kastenhuber, E.R. and Lowe, S.W. (2017) Putting p53 in Context. Cell, 170, 1062-1078. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Borden, K.L. and Freemont, P.S. (1996) The RING Finger Domain: A Recent Example of a Sequence-Structure Family. Current Opinion in Structural Biology, 6, 395-401. [Google Scholar] [CrossRef]
|
|
[11]
|
Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Mo-reau, J., Levine, A.J. and Pavletich, N.P. (1996) Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Sup-pressor Transactivation Domain. Science, 274, 948-953. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, H., Gao, H., Ji, Y., Zhou, Q., Du, Z., Tian, L., Jiang, Y., Yao, K. and Zhou, Z. (2022) Targeting p53-MDM2 Interaction by Small-Molecule Inhibitors: Learning from MDM2 In-hibitors in Clinical Trials. Journal of Hematology & Oncology, 15, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Boddy, M.N., Freemont, P.S. and Borden, K.L. (1994) The p53-Associated Protein MDM2 Contains a Newly Characterized Zinc-Binding Domain Called the RING Finger. Trends in Biochemical Sciences, 19, 198-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shvarts, A., Steegenga, W.T., Riteco, N., van Laar, T., Dekker, P., Bazuine, M., van Ham, R.C., van der Houven van Oordt, W., Hateboer, G., van der Eb, A.J., et al. (1996) MDMX: A Novel p53-Binding Protein with Some Functional Properties of MDM2. The EMBO Journal, 15, 5349-5357. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, X. and Jiang, X. (2012) Mdm2 and MdmX Part-ner to Regulate p53. FEBS Letters, 586, 1390-1396. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, X. (2011) p53 Regulation: Teamwork between RING Domains of Mdm2 and MdmX. Cell Cycle, 10, 4225-4229. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
el-Deiry, W.S. (1998) p21/p53, Cellular Growth Control and Genomic Integrity. Current Topics in Microbiology and Immunology, 227, 121-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004) In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. Science, 303, 844-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Shangary, S. and Wang, S. (2009) Small-Molecule Inhibitors of the MDM2-p53 Protein-Protein Interaction to Reactivate p53 Function: A Novel Approach for Cancer Therapy. Annual Re-view of Pharmacology and Toxicology, 49, 223-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Carrillo, A.M., Hicks, M., Khabele, D. and Eischen, C.M. (2015) Pharmacologically Increasing Mdm2 Inhibits DNA Repair and Cooperates with Genotoxic Agents to Kill p53-Inactivated Ovarian Cancer Cells. Molecular Cancer Research, 13, 1197-1205. [Google Scholar] [CrossRef]
|
|
[21]
|
Kumar, A., Gautam, V., Sandhu, A., Rawat, K., Sharma, A. and Saha, L. (2023) Current and Emerging Therapeutic Approaches for Colorectal Cancer: A Comprehensive Review. World Journal of Gastrointestinal Surgery, 15, 495-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Rigatti, M.J., Verma, R., Belinsky, G.S., Rosenberg, D.W. and Giardina, C. (2012) Pharmacological Inhibition of Mdm2 Triggers Growth Arrest and Promotes DNA Breakage in Mouse Colon Tumors and Human Colon Cancer Cells. Molecular Carcinogenesis, 51, 363-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Verma, R., Rigatti, M.J., Belinsky, G.S., Godman, C.A. and Giardina, C. (2010) DNA Damage Response to the Mdm2 Inhibitor Nutlin-3. Biochemical Pharmacology, 79, 565-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
de Lange, J., Ly, L.V., Lodder, K., Verlaan-de Vries, M., Teunisse, A.F., Jager, M.J. and Jochemsen, A.G. (2012) Synergistic Growth Inhibition Based on Small-Molecule p53 Activation as Treatment for Intraocular Melanoma. Oncogene, 31, 1105-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Koo, N., Sharma, A.K. and Narayan, S. (2022) Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. International Journal of Molecular Sciences, 23, Article No. 5005. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
闫宁, 李桢, 吴成军, 孙铁民. 作用于p53/MDM2/MDMX系统的抗肿瘤小分子抑制剂的研究进展[J]. 中国药物化学杂志, 2016, 26(5): 419-430.
|
|
[27]
|
Traweek, R.S., Cope, B.M., Roland, C.L., Keung, E.Z., Nassif, E.F. and Erstad, D.J. (2022) Targeting the MDM2-p53 Pathway in Dedifferentiated Liposarcoma. Frontiers in Oncology, 12, Article ID: 1006959. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Andreeff, M., Kelly, K.R., Yee, K., Assouline, S., Strair, R., Pop-plewell, L., Bowen, D., Martinelli, G., Drummond, M.W., Vyas, P., et al. (2016) Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia. Clinical Cancer Research, 22, 868-876. [Google Scholar] [CrossRef]
|
|
[29]
|
Patnaik, A., Tolcher, A., Beeram, M., Nemunaitis, J., Weiss, G.J., Bhalla, K., Agrawal, M., Nichols, G., Middleton, S., Beryozkina, A., et al. (2015) Clinical Pharmacology Charac-terization of RG7112, an MDM2 Antagonist, in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 76, 587-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ray-Coquard, I., Blay, J.Y., Italiano, A., Le Cesne, A., Penel, N., Zhi, J., Heil, F., Rueger, R., Graves, B., Ding, M., et al. (2012) Effect of the MDM2 Antagonist RG7112 on the P53 Pathway in Patients with MDM2-Amplified, Well-Differentiated or Dedifferentiated Liposarcoma: An Exploratory Proof-of-Mechanism Study. The Lancet Oncology, 13, 1133-1140. [Google Scholar] [CrossRef]
|
|
[31]
|
Khurana, A. and Shafer, D.A. (2019) MDM2 Antagonists as a Novel Treatment Option for Acute Myeloid Leukemia: Perspectives on the Therapeutic Potential of Idasanutlin (RG7388). OncoTargets and Therapy. 12, 2903-2910. [Google Scholar] [CrossRef]
|
|
[32]
|
Skalniak, L., Kocik, J., Polak, J., Skalniak, A., Rak, M., Wolnicka-Glubisz, A. and Holak, T.A. (2018) Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers (Basel), 10, Article No. 396. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tisato, V., Voltan, R., Gonelli, A., Secchiero, P. and Zauli, G. (2017) MDM2/X Inhibitors under Clinical Evaluation: Perspectives for the Management of Hematological Malignancies and Pe-diatric Cancer. Journal of Hematology & Oncology, 10, Article No. 133. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liao, G., Yang, D., Ma, L., Li, W., Hu, L., Zeng, L., Wu, P., Duan, L. and Liu, Z. (2018) The Development of Piperidinones as Potent MDM2-P53 Protein-Protein Interaction Inhib-itors for Cancer Therapy. European Journal of Medicinal Chemistry, 159, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, D., Li, Z., Rew, Y., Gribble, M., Bartberger, M.D., Beck, H.P., Canon, J., Chen, A., Chen, X., Chow, D., et al. (2014) Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2-p53 Inhibitor in Clinical Development. Journal of Medicinal Chemistry, 57, 1454-1472. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sahin, I., Zhang, S., Navaraj, A., Zhou, L., Dizon, D., Safran, H. and El-Deiry, W.S. (2020) AMG-232 Sensitizes High MDM2-Expressing Tumor Cells to T-Cell-Mediated Killing. Cell Death Discovery, 6, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Canon, J., Osgood, T., Olson, S.H., Saiki, A.Y., Robertson, R., Yu, D., Eksterowicz, J., Ye, Q., Jin, L., Chen, A., et al. (2015) The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Molecular Cancer Therapeutics, 14, 649-658. [Google Scholar] [CrossRef]
|
|
[38]
|
Ghotaslou, A., Samii, A., Boustani, H., Kiani Ghalesardi, O. and Shahidi, M. (2022) AMG-232, a New Inhibitor of MDM-2, Enhance Doxorubicin Efficiency in Pre-B Acute Lym-phoblastic Leukemia Cells. Reports of Biochemistry and Molecular Biology, 11, 111-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bill, K.L., Garnett, J., Meaux, I., Ma, X., Creighton, C.J., Bolshakov, S., Barriere, C., Debussche, L., Lazar, A.J., Prudner, B.C., et al. (2016) SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma. Clinical Cancer Research, 22, 1150-1160. [Google Scholar] [CrossRef]
|
|
[40]
|
Wang, S., Sun, W., Zhao, Y., McEachern, D., Meaux, I., Barrière, C., Stuckey, J.A., Meagher, J.L., Bai, L., Liu, L., et al. (2014) SAR405838: An Optimized Inhibitor of MDM2-p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Research, 74, 5855-5865. [Google Scholar] [CrossRef]
|
|
[41]
|
Kim, M., Laramy, J.K., Gampa, G., Parrish, K.E., Brundage, R., Sarkaria, J.N. and Elmquist, W.F. (2019) Brain Distributional Kinetics of a Novel MDM2 Inhibitor SAR405838: Im-plications for Use in Brain Tumor Therapy. Drug Metabolism & Disposition, 47, 1403-1414. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
de Weger, V.A., de Jonge, M., Langenberg, M.H.G., Schellens, J.H.M., Lolkema, M., Varga, A., Demers, B., Thomas, K., Hsu, K., Tuffal, G., et al. (2019) A Phase I Study of the HDM2 Antagonist SAR405838 Combined with the MEK Inhibitor Pimasertib in Patients with Advanced Solid Tumours. British Journal of Cancer, 120, 286-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Vaupel, A., Holzer, P., Ferretti, S., Guagnano, V., Kallen, J., Mah, R., Masuya, K., Ruetz, S., Rynn, C., Schlapbach, A., et al. (2018) In Vitro and in Vivo Characterization of a Novel, Highly Potent p53-MDM2 Inhibitor. Bioorganic & Medicinal Chemistry Letters, 28, 3404-3408. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Stein, E.M., DeAngelo, D.J., Chromik, J., Chatterjee, M., Bauer, S., Lin, C.C., Suarez, C., de Vos, F., Steeghs, N., Cassier, P.A., et al. (2022) Results from a First-in-Human Phase I Study of Siremadlin (HDM201) in Patients with Advanced Wild-Type TP53 Solid Tumors and Acute Leukemia. Clinical Cancer Research, 28, 870-881. [Google Scholar] [CrossRef]
|
|
[45]
|
Abdul Razak, A.R., Bauer, S., Suarez, C., Lin, C.C., Quek, R., Hütter-Krönke, M.L., Cubedo, R., Ferretti, S., Guerreiro, N., Jullion, A., et al. (2022) Co-Targeting of MDM2 and CDK4/6 with Siremadlin and Ribociclib for the Treatment of Patients with Well-Differentiated or Dedifferentiated Lipo-sarcoma: Results from a Proof-of-Concept, Phase Ib Study. Clinical Cancer Research, 28, 1087-1097. [Google Scholar] [CrossRef]
|
|
[46]
|
Jeay, S., Ferretti, S., Holzer, P., Fuchs, J., Chapeau, E.A., Wartmann, M., Sterker, D., Romanet, V., Murakami, M., Kerr, G., et al. (2018) Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53-MDM2 Inhibitor HDM201. Cancer Research, 78, 6257-6267. [Google Scholar] [CrossRef]
|
|
[47]
|
Seipel, K., Marques, M.A.T., Sidler, C., Mueller, B.U. and Pabst, T. (2018) MDM2- and FLT3-Inhibitors in the Treatment of FLT3-ITD Acute Myeloid Leuke-mia, Specificity and Efficacy of NVP-HDM201 and Midostaurin. Haematologica, 103, 1862-1872. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wu, C.E., Koay, T.S., Esfandiari, A., Ho, Y.H., Lovat, P. and Lunec, J. (2018) ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers (Basel), 11, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kopustinskiene, D.M., Jakstas, V., Savickas, A. and Bernatoniene, J. (2020) Flavonoids as Anticancer Agents. Nutrients, 12, Article No. 457. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. and Bian, J. (2019) A Review on Flavones Targeting Serine/Threonine Protein Kinases for Potential Anticancer Drugs. Bioorganic & Me-dicinal Chemistry, 27, 677-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jandial, D.D., Blair, C.A., Zhang, S., Krill, L.S., Zhang, Y.B. and Zi, X. (2014) Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones. Current Cancer Drug Targets, 14, 181-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Clark, R.C., Lee, S.Y., Searcey, M. and Boger, D.L. (2009) The Isolation, Total Synthesis and Structure Elucidation of Chlorofusin, a Natural Product Inhibitor of the p53-mDM2 Protein-Protein Interaction. Natural Product Reports, 26, 465-477. [Google Scholar] [CrossRef] [PubMed]
|