|
[1]
|
董蕊妮, 李少佩, 李国庆. 浅析水体中重金属污染现状及治理技术[C]//中国环境科学学会学术年会论文集. 北京: 中国环境科学出版社, 2011: 1804-1807.
|
|
[2]
|
马前, 庄琳懿, 倪亚明. 国内外重金属污染处理技术的进展[C]//全国水体污染控制治理技术与突发性水污染事故应急处理体系建设高级研讨会. 北京: 中国环境科学出版社, 2006: 95-102.
|
|
[3]
|
Liang, N., Yang, L. and Dai, J. (2017) Heavy Metal Pollution in Surface Water of Linglong Gold Mining Area, China. Procedia Environmental Sciences, 10, 914-917.
|
|
[4]
|
徐舒, 高强, 谭玉菲, 等. 关于铬环保标准研究[C]//中国环境科学学会科学技术年会论文集: 第四卷. 北京: 《中国学术期刊(光盘版)》电子杂志社有限公司, 2020: 443-447.[CrossRef]
|
|
[5]
|
Verma, B. and Balomajumder, C. (2020) Hexavalent Chromium Reduction from Real Electroplating Wastewater by Chemical Precipitation. Bulletin of the Chemi-cal Society of Ethiopia, 34, 67-74. [Google Scholar] [CrossRef]
|
|
[6]
|
谢东丽, 叶红齐. 钡盐法处理六价铬Cr(Ⅵ)废水的研究[J]. 应用化工, 2012, 41(4): 656-663.
|
|
[7]
|
Rengaraj, S., Yeon, K.H. and Moon, S.H. (2001) Re-moval of Chromium from Water and Wastewater by Ion Exchange Resins. Journal of Hazardous Materials, 87, 273-287. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, C.C., Du, X.D., Li, J., et al. (2016) Photocatalytic Cr(VI) Reduction in Metal-Organic Frameworks: A Mini-Review. Applied Catalysis B: Environmental, 193, 198-216. [Google Scholar] [CrossRef]
|
|
[9]
|
朱冰韧, 厉炯慧, 沈海云, 等. 大容量阴离子交换树脂D296对水中铬(Ⅵ)的吸附[J]. 高校化学工程学报, 2017, 31(3): 743-748.
|
|
[10]
|
曾婧. 离子交换法处理含铬废水的研究[J]. 江西化工, 2019(3): 108-110.
|
|
[11]
|
蔡华敏, 韩巍, 蒋鑫, 等. 水中铬(VI)离子的去除研究进展[J]. 山东化工, 2020, 49(3): 53-54, 56.
|
|
[12]
|
熊威, 葛建华, 陈羽冲, 徐静, 张龙. g-C3N4光催化还原Cr(Ⅵ)研究进展[J]. 广州化工, 2018, 46(1): 12-14.
|
|
[13]
|
Liu, J., Hao, D., Sun, H., Li, Y., Han, J., Fu, B. and Zhou, J. (2021) Integration of MIL-101-NH2 into Cellulosic Foams for Efficient Cr(VI) Reduction under Visible Light. Industrial & Engineering Chemistry Research, 60, 12220-12227. [Google Scholar] [CrossRef]
|
|
[14]
|
Peng, H., Leng, Y. and Guo, J. (2019) Electrochemical Removal of Chromium(VI) from Wastewater. Applied Sciences, 9, Article No. 1156. [Google Scholar] [CrossRef]
|
|
[15]
|
万旭兴, 黄亚宁, 王梦芸, 等. 三维电极电解法处理含铬废水的研究[J]. 电镀与环保, 2019, 39(5): 68-72.
|
|
[16]
|
闫文斌, 葛常艳, 段春发, 等. 高浓度含铬废液处理实验研究[J]. 煤炭与化工, 2019, 42(6): 158-160.
|
|
[17]
|
梁晶, 王磊. 零价铁电化学法处理地下水中的六价铬[J]. 现代盐化工, 2020, 47(2): 23-25.
|
|
[18]
|
Premarathna, K.S.D., Ra-japaksha, A.U., Sarkar, B., et al. (2019) Biochar-Based Engineered Composites for Sorptive Decontamination of Water: A Review. Chemical Engineering Journal, 372, 536-550. [Google Scholar] [CrossRef]
|
|
[19]
|
Selvi, K., Pattabhi, S. and Kadirvelu, K. (2001) Removal of Cr(VI) from Aqueous Solution by Adsorption onto Activated Carbon. Bioresource Technology, 80, 87-89. [Google Scholar] [CrossRef]
|
|
[20]
|
Tiadi, N., Mohanty, M., Mohanty, C.R., et al. (2017) Studies on Adsorption Behavior of an Industrial Waste for Removal of Chromium from Aqueous Solution. South African Jour-nal of Chemical Engineering, 23, 132-138. [Google Scholar] [CrossRef]
|
|
[21]
|
严毅, 张娈娈, 廖运文, 等. PEI改性碳纳米管吸附水溶液中的六价铬离子[J]. 西华师范大学学报(自然科学版), 2017, 38(1): 57-62.
|
|
[22]
|
王学川, 张斐斐, 强涛涛. 重金属吸附材料研究现状[J]. 功能材料, 2014, 45(11): 11001-11007+11012.
|
|
[23]
|
伍喜庆, 黄志华. 改性活性炭吸附金的性能[J]. 中国有色金属学报, 2005(1): 129-132.
|
|
[24]
|
范延臻, 王宝贞, 王琳, 等. 改性活性炭对有机物的吸附性能[J]. 环境化学, 2001(5): 444-448.
|
|
[25]
|
Guillossou, R., Le Roux, J., Brosillon, S., et al. (2020) Benefits of Ozonation before Activated Carbon Adsorption for the Removal of Organic Micropollutants from Wastewater Effluents. Chemosphere, 245, Article ID: 125530. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
张华. 柚皮基活性炭制备及吸附应用机理研究[D]: [博士学位论文]. 南宁: 广西大学, 2013.
|
|
[27]
|
Omri, A., et al. (2013) Preparation, Modification and Industrial Application of Activated Carbon from Almond Shell. Journal of Industrial and Engineering Chemistry, 19, 2092-2099.
|
|
[28]
|
Timur, S., Kantarli, R.C. and Onenc, R. (2010) Characterization and Application of Activated Carbon Produced from Oak Cups Pulp. Journal of Analytical & Applied Pyrolysis, 89, 129-136. [Google Scholar] [CrossRef]
|
|
[29]
|
余新武, 张继余, 张淑云, 等. 新型层柱材料ZnAl-CuW11In的合成、表征及催化活性[J]. 无机化学学报, 1996, 12(3): 75-78.
|
|
[30]
|
陈银飞, 葛忠华, 孙勤, 等. LDH新型材料的制备和烟气的脱硫性能[J]. 浙江工业大学学报, 1995(4): 324-329.
|
|
[31]
|
Mahzoul, H., Brilhac, J.F. and Gilot, P. (1999) Experimental and Mechanistic Study of NOx Adsorption over NOx Trap Catalysts. Applied Catalysis B: Environmental, 20, 47-55. [Google Scholar] [CrossRef]
|
|
[32]
|
Armor, J.N., Braymer, T.A., Farris, T.S., et al. (1996) Cal-cined Hydrotalcites for the Catalytic Decomposition of N2O in Simulated Process Streams. Applied Catalysis B: Envi-ronmental, 7, 397-406. [Google Scholar] [CrossRef]
|
|
[33]
|
高立国, 刘四霞, 宋小利, 等. La3+-Zn2+-Al3+- -LDHs的制备及其对含Cr(Ⅵ)废水的吸附研究[J]. 硅酸盐通报, 2018, 37(7): 2184-2190.
|
|
[34]
|
Chitrakar, R., Tezuka, S., Sonoda, A., et al. (2005) Adsorption of Phosphate from Seawater on Calcined MgMn-Layered Double Hydroxides. Journal of Colloid and Interface Science, 290, 45-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Álvarez-Ayuso, E. and Nugteren, H.W. (2005) Purification of Chromium(VI) Finishing Wastewaters Using Calcined and Uncalcined Mg-Al- Hydrotalcite. Water Research, 39, 2535-2542. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
邓勤. 水处理吸附剂的研究进展[J]. 钦州学院学报, 2010, 25(3): 19-22.
|
|
[37]
|
Matandabuzo, M. and Ajibade, P.A. (2019) Vinyl Pyridinium Polymeric Ionic Liquid Functionalized Carbon Nanotube Composites as Adsorbent for Chromium(VI) in Aqueous Solution. Journal of Molecular Liquids, 296, Article ID: 111778. [Google Scholar] [CrossRef]
|
|
[38]
|
Vetriselvi, V. and Santhi, R.J. (2015) Redox Polymer as an Adsorbent for the Removal of Chromium(VI) and Lead(II) from the Tannery Effluents. Water Resources and Industry, 10, 39-52. [Google Scholar] [CrossRef]
|
|
[39]
|
Hashem, M.A., Hasan, M., Momen, M.A., et al. (2020) Water Hyacinth Biochar for Trivalent Chromium Adsorption from Tannery Wastewater. Environmental and Sustainability Indicators, 5, Article ID: 100022. [Google Scholar] [CrossRef]
|
|
[40]
|
Mishra, A., Gupta, B., Kumar, N., et al. (2020) Synthesis of Cal-cite-Based Bio-Composite Biochar for Enhanced Biosorption and Detoxification of Chromium Cr (VI) by Zhihengliuella sp. ISTPL4. Bioresource Technology, 307, Article ID: 123262. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2): 83-89.
|
|
[42]
|
Reddy, D.H.K. and Lee, S.-M. (2014) Magnetic Biochar Composite: Facile Synthesis, Characterization, and Application for Heavy Metal Removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103. [Google Scholar] [CrossRef]
|
|
[43]
|
Mohan, D., Pittman, C.U., Bricka, M., et al. (2007) Sorption of Arsenic, Cadmium, and Lead by Chars Produced from Fast Pyrolysis of Wood and Bark During Bio-Oil Production. Journal of Colloid and Interface Science, 310, 57-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Dong, X.L., Ma, L.Q. and Li, Y.C. (2011) Characteristics and Mechanisms of Hexavalent Chromium Removal by Biochar from Sugar Beet Tailing. Journal of Hazardous Materials, 190, 909-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
于志红. 锰氧化物-生物炭复合材料对砷的生物有效性的影响[D]: [硕士学位论文]. 北京: 中国农业科学院, 2015.
|
|
[46]
|
张越, 林珈羽, 刘沅, 等. 改性生物炭对镉离子吸附性能研究[J]. 武汉科技大学学报, 2016, 39(1): 48-52.
|
|
[47]
|
李紫薇, 张艺, 欧阳艳, 等. 薰衣草叶子化学成分分析与抗氧化活性[J]. 广州化工, 2016, 44(10): 64-66+75.
|